Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Public Health ; 24(1): 490, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365657

RESUMO

BACKGROUND: The Basic Public Health Service (BPHS), a recently announced free healthcare program, aims to combat the most prevalent Noncommunicable Disease-"Hypertension" (HTN)-and its risk factors on a nationwide scale. In China, there is a rife that HTN less impacts women during their lifetime. We, therefore, aimed to evaluate the sex disparity in hypertension patients with comorbidities among south-west Chinese and the contribution of BPHS to address that concern. METHODS: We have opted for a multistage stratified random sampling method to enroll hypertensive patients of 35 years and older, divided them into BPHS and non-BPHS groups. We assessed the sex disparity in HTN patients with four major comorbidities- Dyslipidemia, Diabetes Mellitus (DM), Cardiovascular Disease (CVD), and Chronic Kidney Disease (CKD), and descriptive data were compiled. Odds ratios from logistic regression models estimated the effectiveness of BPHS in the management of HTN with comorbidities. RESULTS: Among 1521 hypertensive patients,1011(66.5%) were managed in the BPHS group. The proportion of patients who had at least one comorbidity was 70.7% (95% confidence interval [CI]: 66.3-76.8%), patients aged 65 years and older were more likely to have coexisting comorbidities. Participants who received the BPHS showed significant blood pressure (BP) control with two comorbidities (odds ratio [OR] = 2.414, 95% CI: 1.276-4.570), three or more (OR = 5.500, 95%CI: 1.174-25.756). Patients with dyslipidemia and DM also benefited from BPHS in controlling BP (OR = 2.169, 95% CI: 1.430-3.289) and (OR = 2.785, 95%CI: 1.242-6.246), respectively. In certain high-income urban survey centers, there was sex differences in the HTN management provided by BPHS, with men having better BP control rates than women. CONCLUSIONS: Perhaps this is the first study in China to succinctly show the effectiveness and sex disparity regarding "management of hypertensive comorbidities". This supports that the BPHS program plays a pivotal role in controlling BP, therefore should recommend the national healthcare system to give women a foremost priority in BPHS, especially to those from low-socioeconomic and low-scientific literacy regions.


Assuntos
Diabetes Mellitus , Dislipidemias , Hipertensão , Humanos , Feminino , Masculino , Pressão Sanguínea , China/epidemiologia , Comorbidade , Hipertensão/epidemiologia , Diabetes Mellitus/epidemiologia , Fatores de Risco , Serviços de Saúde
2.
Phytopathology ; 113(7): 1244-1253, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36706002

RESUMO

The root rot disease caused by Fusarium oxysporum f. sp. ginseng is one of the most destructive diseases of ginseng, an economically important herb. However, little is known about the pathogen's toxin biosynthesis or the molecular mechanisms regulating infection of ginseng. In this study we identified and functionally characterized the FoRSR1 gene that encodes a Ras-related (RSR) small GTPase homologous to yeast Rsr1 in F. oxysporum f. sp. ginseng. Disruption of FoRSR1 resulted in a significant reduction in mycelial dry weight in liquid cultures, although vegetative growth rate was not affected on culture plates. Notably, the Forsr1 mutant exhibited blunted and swollen hyphae with multi-nucleated compartments. It produced fewer and morphologically abnormal conidia and was defective in chlamydospore formation. In infection assays with ginseng roots, the Forsr1 mutant was significantly less virulent and caused only limited necrosis at the wounding sites. Deletion of FoRSR1 also affected pigmentation, autophagy, and production of fusaric acid. Furthermore, the expression of many candidate genes involved in secondary metabolism was significantly downregulated in the mutant, suggesting that FoRSR1 is also important for secondary metabolism. Overall, our results indicated that FoRSR1 plays important roles in conidiation, vacuolar morphology, secondary metabolism, and pathogenesis in F. oxysporum f. sp. ginseng.


Assuntos
Fusarium , Panax , Virulência/genética , Ácido Fusárico/metabolismo , Doenças das Plantas , Saccharomyces cerevisiae
3.
New Phytol ; 230(2): 757-773, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411336

RESUMO

Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.


Assuntos
Fusarium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Purinas , Reprodução , Esporos Fúngicos/metabolismo
4.
J Integr Plant Biol ; 63(5): 961-976, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33205861

RESUMO

In plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89-amino acid NtPROPPI includes a 24-amino acid N-terminal signal peptide and NbPROPPI1/2-GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight-amino-acid segment in the NbPROPPI1 C-terminus was essential for its immune function and a synthetic 20-residue peptide, NbPPI1, derived from the C-terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen-activated protein kinases, and up-regulation of the defense genes Flg22-induced receptor-like kinase (FRK) and WRKY DNA-binding protein 33 (WRKY33). The NbPPI1-induced defense responses require Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética
5.
Mol Microbiol ; 111(5): 1245-1262, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746783

RESUMO

Ascospores are the primary inoculum in Fusarium graminearum. Interestingly, 70 of its genes have premature stop codons (PSC) and require A-to-I editing during sexual reproduction to encode full-length proteins, including the ortholog of yeast Ama1, a meiosis-specific activator of APC/C. In this study, we characterized the function of FgAMA1 and its PSC editing. FgAMA1 was specifically expressed during sexual reproduction. The Fgama1 mutant was normal in growth and perithecium formation but defective in ascospogenesis. Instead of forming four-celled, uninucleate ascospores, Fgama1 mutant produced oval, single-celled, binucleated ascospores by selfing. Some mutant ascospores began to bud and underwent additional mitosis inside asci. Expression of the wild-type or edited FgAMA1 but not the uneditable allele complemented Fgama1. In the Fgama1 x mat-1-1 outcross, over 60% of the asci had eight Fgama1 or intermediate (elongated but single-celled) ascospores, suggesting efficient meiotic silencing of unpaired FgAMA1. Deletion of FgPAL1, one of the genes upregulated in Fgama1 also resulted in defects in ascospore morphology and budding. Overall, our results showed that FgAMA1 is dispensable for meiosis but important for ascospore formation and discharge. In F. graminearum, whereas some of its targets are functional during meiosis, FgAma1 may target other proteins that function after spore delimitation.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Meiose , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Mutação , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Regulação para Cima
6.
Mol Microbiol ; 109(4): 494-508, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923654

RESUMO

Deletion of Prp4, the only kinase among spliceosome components, is not lethal in Fusarium graminearum but Fgprp4 mutants have severe growth defects and produced spontaneous suppressors. To identify novel suppressor mutations of Fgprp4, we sequenced the genome of suppressor S37 that was normal in growth but only partially recovered for intron splicing and identified a tandem duplication of 9-aa in the tri-snRNP component FgSNU66. Among the 19 additional suppressor strains found to have mutations in FgSNU66 (out of 260 screened), five had the same 9-aa duplication event with S37 and another five had the R477H/C mutation. The rest had nonsense or G-to-D mutations in the C-terminal 27-aa (CT27) region of FgSnu66, which is absent in its yeast ortholog. Truncation of this C-terminal region reduced the interaction of FgSnu66 with FgHub1 but increased its interaction with FgPrp8 and FgPrp6. Five phosphorylation sites were identified in FgSnu66 by phosphoproteomic analysis and the T418A-S420A-S422A mutation was shown to reduce virulence. Overall, our results showed that mutations in FgSNU66 can suppress deletion of Fgprp4, which has not been reported in other organisms, and the C-terminal tail of FgSnu66 plays a role in its interaction with key tri-snRNP components during spliceosome activation.


Assuntos
Proteínas Fúngicas/genética , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Supressão Genética/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genoma Fúngico/genética , Splicing de RNA/genética
7.
Environ Microbiol ; 19(10): 4065-4079, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28654215

RESUMO

The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Genes Fúngicos , Fatores de Processamento de Serina-Arginina/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Fosforilação , Proteínas Quinases/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Esporos Fúngicos/metabolismo , Tricotecenos , Triticum/microbiologia
8.
Cereb Cortex ; 25(9): 2741-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24735674

RESUMO

Rats generate sweeping whisker movements in order to explore their environments and identify objects. In somatosensory pathways, neuronal activity is modulated by the frequency of whisker vibration. However, the potential role of rhythmic neuronal activity in the cerebral processing of sensory signals and its mechanism remain unclear. Here, we showed that rhythmic vibrissal stimulation with short duration in anesthetized rats resulted in an increase or decrease in the amplitude of somatosensory-evoked potentials (SEPs) in the contralateral barrel cortex. The plastic change of the SEPs was frequency dependent and long lasting. The long-lasting enhancement of the vibrissa-to-cortex evoked response was side- but not barrel-specific. Local application of dl-2-amino-5-phosphonopentanoic acid into the barrel cortex revealed that this vibrissa-to-cortex long-term plasticity in adult rats was N-methyl-d-aspartate receptor-dependent. Most interestingly, whisker trimming through postnatal day (P)1-7 but not P29-35 impaired the long-term plasticity induced by 100 Hz vibrissal stimulation. The short period of rhythmic vibrissal stimulation did not induce long-lasting plasticity of field potentials in the thalamus. In conclusion, our results suggest that natural rhythmic whisker activity modifies sensory information processing in cerebral cortex, providing further insight into sensory perception.


Assuntos
Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Microinjeções , Plasticidade Neuronal/efeitos dos fármacos , Estimulação Física , Psicofísica , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Fatores de Tempo , Vibrissas/inervação
9.
Eur J Neurosci ; 39(1): 35-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148096

RESUMO

There is intensive gap-junctional coupling between glial processes, but their significance in sensory functions remains unknown. Connexin-43 (Cx43), a major component of astrocytic gap-junction channels, is abundantly expressed in astrocytes. To investigate the role of Cx43-mediated gap junctions between astrocytes in sensory functions, we generated Cx43 knockout (KO) mice with a mouse line carrying loxP sites flanking exon 2 of the Cx43 gene and the transgenic line expressing Cre recombinase under control of the glial fibrillary acidic protein promoter, which exhibited a significant loss of Cx43 in astrocytes in the barrel cortex. Although Cx43 expression between the astrocytes measured by immunohistochemistry was virtually abolished in Cx43 KO mice, they had normal architecture in the barrel cortex but the intensity of cytochrome oxide histochemistry decreased significantly. In vivo electrophysiological analysis revealed that the long-term potentiation of the vibrissal evoked responses in the barrel cortex evoked by high-frequency rhythmic vibrissal stimuli (100 Hz, 1 s) was abolished in Cx43 KO mice. Current source density analysis also revealed that astrocytic Cx43 was important to the flow of excitation within the laminar connections in barrel cortex. Behavioral tests showed that the ability of Cx43 KO mice to sense the environment with their whiskers decreased. Even so, the jump-stand experiment showed that they could still discriminate rough from smooth surfaces. Our findings suggest that Cx43-mediated gap-junctional coupling between astrocytes is important in the neuron-glia interactions required for whisker-related sensory functions and plasticity.


Assuntos
Astrócitos/fisiologia , Conexina 43/metabolismo , Potenciais Somatossensoriais Evocados , Deleção de Genes , Potenciação de Longa Duração , Córtex Somatossensorial/fisiologia , Animais , Astrócitos/metabolismo , Conexina 43/genética , Junções Comunicantes/metabolismo , Camundongos , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
10.
Front Microbiol ; 15: 1352354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384269

RESUMO

In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.

11.
J Hazard Mater ; 465: 133476, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232546

RESUMO

In this work, novel multifunctional cationic template copolymers with flocculation and sterilization capabilities were synthesized using a low-pressure ultraviolet (LP-UV) template polymerization method for the removal of kaolin and Escherichia coli (E. coli) from water. The influence of template agents on the structural performance of the copolymers was evaluated through characterization, which showed that template copolymer TPADM possesses a higher cationic charge density and a more complex rough surface, contributing to better flocculation performance than that of the non-template copolymer CPADM. Under optimal experimental conditions, TPADM-1 exhibited removal rates of 98.45% for kaolin and 99% for E. coli (OD600 =0.04), marginally outperforming the non-template copolymer. Simultaneously, TPADM-1 produced good adaptability to kaolin and E. coli wastewater in terms of wide pH, speculating that charge neutralization, adsorption bridging, patching, and sweeping simultaneously dominate the flocculation mechanism. Interestingly, SEM and 3D-EEM analysis confirm that the sterilization of E. coli occurs through two distinct functions: initially adsorption followed by subsequent cell membrane rupture and leakage of cellular contents, ultimately leading to cell death. This research further confirms the feasibility of the designed novel multifunctional copolymers for achieving simultaneous disinfection and turbidity removal, demonstrating practical applicability in real water treatment processes.


Assuntos
Compostos de Amônio Quaternário , Purificação da Água , Floculação , Caulim/química , Escherichia coli , Antibacterianos , Polímeros/química , Purificação da Água/métodos , Cátions , Desinfecção
12.
Front Plant Sci ; 15: 1355178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463563

RESUMO

Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.

13.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592894

RESUMO

Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, has emerged as a new threat to wheat production and quality in North China. Genetic enhancement of wheat resistance to FCR remains the most effective approach for disease control. In this study, we phenotyped 435 Chinese wheat cultivars through FCR inoculation at the seedling stage in a greenhouse. Our findings revealed that only approximately 10.8% of the wheat germplasms displayed moderate or high resistance to FCR. A genome-wide association study (GWAS) using high-density 660K SNP led to the discovery of a novel quantitative trait locus on the long arm of chromosome 3B, designated as Qfcr.hebau-3BL. A total of 12 significantly associated SNPs were closely clustered within a 1.05 Mb physical interval. SNP-based molecular markers were developed to facilitate the practical application of Qfcr.hebau-3BL. Among the five candidate FCR resistance genes within the Qfcr.hebau-3BL, we focused on TraesCS3B02G307700, which encodes a protein kinase, due to its expression pattern. Functional validation revealed two transcripts, TaSTK1.1 and TaSTK1.2, with opposing roles in plant resistance to fungal disease. These findings provide insights into the genetic basis of FCR resistance in wheat and offer valuable resources for breeding resistant varieties.

14.
Chin J Physiol ; 56(6): 309-17, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24495177

RESUMO

Interactions between neurons and glial cells in the brain have important roles in brain functions such as development and plasticity of neural circuits or functions. Glial cells are much more actively involved in brain functions than previously thought. Here, we used vibrissal stimuli to induce sensoryevoked responses and multiunit spikes in the contralateral barrel cortex in a rat model. Local application of the gliotoxin DL-alpha-aminoadipate (AA) revealed that glial cells were involved in the sensoryevoked responses. The increases in the amplitude of somatosensory-evoked potential (SEP) and multiunit sensory-evoked spike rates in barrel cortex after AA injection were dramatic. Immunohistochemical staining of brain lipid binding protein (BLBP) and NeuN showed AA decreased cell number of astrocytes but not neurons in the barrel cortex. In conclusion, our results suggested an important role for astrocyte metabolism in normal synaptic activities.


Assuntos
Neuroglia/fisiologia , Vibrissas/fisiologia , Ácido 2-Aminoadípico/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/fisiologia , Potenciais Somatossensoriais Evocados , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/fisiologia
15.
Plants (Basel) ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960057

RESUMO

Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.

16.
Int J Biol Macromol ; 242(Pt 4): 125046, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245767

RESUMO

Maize ear rot is a widespread disease and the main pathogen is Fusarium verticillioides. Plant microRNAs (miRNAs) have great effects on disease resistance and it has been reported that maize miRNA participates in defense responses in maize ear rot. However, the trans-kingdom regulation of miRNAs between maize and F. verticillioides remains uncharacterized. In this study, the relationship between miRNA-like RNAs (milRNAs) of F. verticillioides and pathogenicity was investigated, followed by sRNA analysis and degradome sequencing of miRNA profiles and the target genes of maize and F. verticillioides after inoculation. It was found that the milRNA biogenesis positively regulated the pathogenicity of F. verticillioides by knocking out the gene FvDicer2-encoded Dicer-like protein in F. verticillioides. Following inoculation with F. verticillioides, 284 known and 6571 novel miRNAs were obtained in maize, including 28 miRNAs differentially expressed at multiple time points. The target genes of maize differentially expressed miRNAs in F. verticillioides mediated multiple pathways, including autophagy and MAPK signaling pathway. Fifty-one novel F. verticillioides milRNAs were predicted to target 333 genes in maize involved in MAPK signaling pathways, plant hormone signaling transduction and plant-pathogen interaction pathways. Additionally, the miR528b-5p in maize targeted the mRNA of FvTTP which encoded a twice transmembrane protein in F. verticillioides. The FvTTP-knockout mutants displayed decreased pathogenicity and reduced synthesis of fumonisins. Thus, by interfering with the translation of FvTTP, the miR528b-5p inhibited F. verticillioides infection. These findings suggested a novel function of miR528 in resisting F. verticillioides infection. The miRNAs identified in this research and their putative target genes can be used to further elucidate the trans-kingdom functions of microRNAs in plant pathogen interaction.


Assuntos
Fumonisinas , Fusarium , MicroRNAs , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resistência à Doença/genética , Fumonisinas/metabolismo , Fusarium/metabolismo , Doenças das Plantas/genética
17.
Front Microbiol ; 13: 845870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711760

RESUMO

As one of the common physical remains in archaeological discoveries, human bones are important bases for studying the history of human development, which is of great significance for exploring the evolution law of ancient human, reconstructing ancient human society, and tracking the development of human civilization. However, in the process of human bone burial, in addition to being affected by physical and chemical factors, it will also be affected by microorganisms in the buried soil, resulting in a variety of diseases. According to the determination and analysis of the microbial community structure and diversity in the burial soil of Yangguanzhai Site in Gaoling District in Xi'an city, Shaanxi Province, this paper attempts to explore the influence of microorganisms in the burial environment on human bones, in order to provide scientific proof for the microbial prevention and control of bone relics in the archaeological excavation site. For the first time, Illumina NovaSeq high-throughput sequencing technology was used to analyze the microbial community structure in the burial soil. At the phylum level, there were 8 dominant bacteria species in the soil samples of tombs, which were Firmicutes, Actinobacteriota, Actinobacteria, Proteobacteria, Acidobacteriota, Methylomirabilota, Chloroflexi, Bacteroidota. At the genus level, there were 12 dominant species in the soil samples of tombs, including MIZ17, MND1, Gaiella, oc32, Kroppenstedtia, Halomonas, Bacteroides, Dongia, Faecalibacterium, Nocardioides, Pseudomonas, Pseudonocardia. The overall microorganisms in the soil of Yangguanzhai Cemetery were relatively well-distributed, and the microbial community structure near human bones is the most abundant and diverse. Therefore, it is necessary to take some measures to control microorganisms and protect human bones.

18.
Front Microbiol ; 13: 1030523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532423

RESUMO

Fusarium verticillioides and Fusarium graminearum are important pathogens causing disease in maize (Zea mays) worldwide. The distributions of these fungal pathogens vary greatly in different regions and in different years, and are influenced by environmental and climatic conditions. Temperature has significant effects on the growth and mycotoxin production of Fusarium species. In this study, the effects of temperature on the growth and pathogenicity of F. verticillioides and F. graminearum were investigated. F. verticillioides grew fastest and exhibited the strongest pathogenicity to maize stems and grains at 30°C, while F. graminearum grew best at 20°C. Both species produced more toxins at 20°C than at 30°C. To explain the interspecific differences in the relationship of growth and temperature, RNA-seq was used to compare F. verticillioides and F. graminearum cultivated for 4 d at the optimum temperatures of 30°C and 20°C, respectively. Samples of F. verticillioides were also cultivated for 9 d (to maximize toxin production) at 20°C and 30°C and analyzed by RNA-seq to investigate the influence of temperature for different growth stages. The differently expressed genes (DEGs) were identified by comparison of cultures grown for the same amount of time but at different temperatures. GO enrichment analysis showed high enrichment of DEGs in categories of membrane part, catalytic activity, metabolic process, and growth at warmer temperature resulted in more down-regulated DEGs enriched in membrane components in all groups. KEGG analysis revealed enrichment of DEGs related to different temperatures in carbohydrate and amino acid metabolism pathways. For both species, there was decreased expression of many DEGs related to amino acid metabolism when cultivated at warm temperature, such as genes related to beta-alanine metabolism and arginine and proline metabolism. However, changes in genes related to glyoxylate and dicarboxylate metabolism and fatty acid degradation were more related to the growth state. The results showing different responses pattern of these pathways provides a foundation for further investigation of the molecular mechanisms underlying distinct thermal ecological niches of F. verticillioides and F. graminearum.

19.
R Soc Open Sci ; 9(12): 220994, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36483754

RESUMO

We have synthesized several morphologies and crystal structures of MgWO4 using a one-pot hydrothermal method, producing not only monoclinic stars and large nanoparticles but also triclinic wool balls and sub-10 nm nanoparticles. Herein we describe the importance of reaction parameters in demonstrating morphology control of as-prepared MgWO4. Moreover, we correlate structure and composition with the resulting photoluminescence and radioluminescence properties. Specifically, triclinic-phase samples yielded a photoluminescence emission of 421 nm, whereas monoclinic-phase materials gave rise to an emission maximum of 515 nm. The corresponding radioluminescence data were characterized by a broad emission peak, located at 500 nm for all samples. Annealing the wool balls and sub-10 nm particles to transform the crystal structure from a triclinic to a monoclinic phase yielded a radioluminescence (RL) emission signal that was two orders of magnitude greater than that of their unannealed counterparts. Finally, to confirm the practical utility of these materials for biomedical applications, a series of sub-10 nm particles, including as-prepared and annealed samples, were functionalized with biocompatible PEG molecules, and subsequently were found to be readily taken up by various cell lines as well as primary cultured hippocampal neurons with low levels of toxicity, thereby highlighting for the first time the potential of this particular class of metal oxides as viable and readily generated platforms for a range of biomedical applications.

20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 40(6): 673-9, 2011 11.
Artigo em Zh | MEDLINE | ID: mdl-22190531

RESUMO

There are two types of cells in the central nervous systems (CNS) of mammals-neurons and glia. The structure and function of neurons have been thoroughly studied; while the role of glia in information processing has not been systematically studied because they cannot produce action potentials like neuron. During the past decades, glial cells were considered to play a supportive role in CNS instead of information processing. Recently, a variety of studies suggest that glial cells are actively involved in the regulation of brain function associated with neurons. Glial cells, especially astrocytes play important roles in different sensory processing. In the present article, we review the role of astrocytes in sensory processing in the CNS.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/fisiologia , Sensação/fisiologia , Animais , Astrócitos/citologia , Humanos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA