Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 29(6): 2533-2551, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878084

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.


Assuntos
Córtex Cerebral , Cognição/fisiologia , Emoções/fisiologia , Modelos Neurológicos , Vias Neurais , Personalidade/fisiologia , Adulto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
2.
Neuroimage ; 201: 116043, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344486

RESUMO

Individuals with Alzheimer's disease (AD) dementia exhibit significant heterogeneity across clinical symptoms, atrophy patterns, and spatial distribution of Tau deposition. Most previous studies of AD heterogeneity have focused on atypical clinical subtypes, defined subtypes with a single modality, or restricted their analyses to a priori brain regions and cognitive tests. Here, we considered a data-driven hierarchical Bayesian model to identify latent factors from atrophy patterns and cognitive deficits simultaneously, thus exploiting the rich dimensionality within each modality. Unlike most previous studies, our model allows each factor to be expressed to varying degrees within an individual, in order to reflect potential multiple co-existing pathologies. By applying our model to ADNI-GO/2 AD dementia participants, we found three atrophy-cognitive factors. The first factor was associated with medial temporal lobe atrophy, episodic memory deficits and disorientation to time/place ("MTL-Memory"). The second factor was associated with lateral temporal atrophy and language deficits ("Lateral Temporal-Language"). The third factor was associated with atrophy in posterior bilateral cortex, and visuospatial executive function deficits ("Posterior Cortical-Executive"). While the MTL-Memory and Posterior Cortical-Executive factors were discussed in previous literature, the Lateral Temporal-Language factor is novel and emerged only by considering atrophy and cognition jointly. Several analyses were performed to ensure generalizability, replicability and stability of the estimated factors. First, the factors generalized to new participants within a 10-fold cross-validation of ADNI-GO/2 AD dementia participants. Second, the factors were replicated in an independent ADNI-1 AD dementia cohort. Third, factor loadings of ADNI-GO/2 AD dementia participants were longitudinally stable, suggesting that these factors capture heterogeneity across patients, rather than longitudinal disease progression. Fourth, the model outperformed canonical correlation analysis at capturing associations between atrophy patterns and cognitive deficits. To explore the influence of the factors early in the disease process, factor loadings were estimated in ADNI-GO/2 mild cognitively impaired (MCI) participants. Although the associations between the atrophy patterns and cognitive profiles were weak in MCI compared to AD, we found that factor loadings were associated with inter-individual regional variation in Tau uptake. Taken together, these results suggest that distinct atrophy-cognitive patterns exist in typical Alzheimer's disease, and are associated with distinct patterns of Tau depositions before clinical dementia emerges.


Assuntos
Doença de Alzheimer/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Atrofia , Teorema de Bayes , Encéfalo/patologia , Cognição , Estudos Transversais , Feminino , Humanos , Masculino , Proteínas tau/metabolismo
3.
Neuroimage ; 196: 126-141, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974241

RESUMO

Global signal regression (GSR) is one of the most debated preprocessing strategies for resting-state functional MRI. GSR effectively removes global artifacts driven by motion and respiration, but also discards globally distributed neural information and introduces negative correlations between certain brain regions. The vast majority of previous studies have focused on the effectiveness of GSR in removing imaging artifacts, as well as its potential biases. Given the growing interest in functional connectivity fingerprinting, here we considered the utilitarian question of whether GSR strengthens or weakens associations between resting-state functional connectivity (RSFC) and multiple behavioral measures across cognition, personality and emotion. By applying the variance component model to the Brain Genomics Superstruct Project (GSP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 47% across 23 behavioral measures after GSR. In the Human Connectome Project (HCP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 40% across 58 behavioral measures, when GSR was applied after ICA-FIX de-noising. To ensure generalizability, we repeated our analyses using kernel regression. GSR improved behavioral prediction accuracies by an average of 64% and 12% in the GSP and HCP datasets respectively. Importantly, the results were consistent across methods. A behavioral measure with greater RSFC-explained variance (using the variance component model) also exhibited greater prediction accuracy (using kernel regression). A behavioral measure with greater improvement in behavioral variance explained after GSR (using the variance component model) also enjoyed greater improvement in prediction accuracy after GSR (using kernel regression). Furthermore, GSR appeared to benefit task performance measures more than self-reported measures. Since GSR was more effective at removing motion-related and respiratory-related artifacts, GSR-related increases in variance explained and prediction accuracies were unlikely the result of motion-related or respiratory-related artifacts. However, it is worth emphasizing that the current study focused on whole-brain RSFC, so it remains unclear whether GSR improves RSFC-behavioral associations for specific connections or networks. Overall, our results suggest that at least in the case for young healthy adults, GSR strengthens the associations between RSFC and most (although not all) behavioral measures. Code for the variance component model and ridge regression can be found here: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/Li2019_GSR.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Personalidade , Adolescente , Adulto , Artefatos , Emoções , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 113(42): E6535-E6544, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27702899

RESUMO

We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aß+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aß+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Teorema de Bayes , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Atrofia , Encéfalo/patologia , Encéfalo/fisiopatologia , Demência/etiologia , Demência/patologia , Demência/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fatores de Risco
6.
Biol Psychiatry ; 87(12): 1071-1082, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955916

RESUMO

BACKGROUND: Heterogeneity in autism spectrum disorder (ASD) has hindered the development of biomarkers, thus motivating subtyping efforts. Most subtyping studies divide individuals with ASD into nonoverlapping (categorical) subgroups. However, continuous interindividual variation in ASD suggests that there is a need for a dimensional approach. METHODS: A Bayesian model was employed to decompose resting-state functional connectivity (RSFC) of individuals with ASD into multiple abnormal RSFC patterns, i.e., categorical subtypes, henceforth referred to as "factors." Importantly, the model allowed each individual to express one or more factors to varying degrees (dimensional subtyping). The model was applied to 306 individuals with ASD (5.2-57 years of age) from two multisite repositories. Post hoc analyses associated factors with symptoms and demographics. RESULTS: Analyses yielded three factors with dissociable whole-brain hypo- and hyper-RSFC patterns. Most participants expressed multiple (categorical) factors, suggestive of a mosaic of subtypes within individuals. All factors shared abnormal RSFC involving the default mode network, but the directionality (hypo- or hyper-RSFC) differed across factors. Factor 1 was associated with core ASD symptoms. Factors 1 and 2 were associated with distinct comorbid symptoms. Older male participants preferentially expressed factor 3. Factors were robust across control analyses and were not associated with IQ or head motion. CONCLUSIONS: There exist at least three ASD factors with dissociable whole-brain RSFC patterns, behaviors, and demographics. Heterogeneous default mode network hypo- and hyper-RSFC across the factors might explain previously reported inconsistencies. The factors differentiated between core ASD and comorbid symptoms-a less appreciated domain of heterogeneity in ASD. These factors are coexpressed in individuals with ASD with different degrees, thus reconciling categorical and dimensional perspectives of ASD heterogeneity.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Adolescente , Adulto , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Adulto Jovem
7.
Neurology ; 95(12): e1672-e1685, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32675078

RESUMO

OBJECTIVE: To determine whether atrophy relates to phenotypical variants of posterior cortical atrophy (PCA) recently proposed in clinical criteria (i.e., dorsal, ventral, dominant-parietal, and caudal) we assessed associations between latent atrophy factors and cognition. METHODS: We employed a data-driven Bayesian modeling framework based on latent Dirichlet allocation to identify latent atrophy factors in a multicenter cohort of 119 individuals with PCA (age 64 ± 7 years, 38% male, Mini-Mental State Examination 21 ± 5, 71% ß-amyloid positive, 29% ß-amyloid status unknown). The model uses standardized gray matter density images as input (adjusted for age, sex, intracranial volume, MRI scanner field strength, and whole-brain gray matter volume) and provides voxelwise probabilistic maps for a predetermined number of atrophy factors, allowing every individual to express each factor to a degree without a priori classification. Individual factor expressions were correlated to 4 PCA-specific cognitive domains (object perception, space perception, nonvisual/parietal functions, and primary visual processing) using general linear models. RESULTS: The model revealed 4 distinct yet partially overlapping atrophy factors: right-dorsal, right-ventral, left-ventral, and limbic. We found that object perception and primary visual processing were associated with atrophy that predominantly reflects the right-ventral factor. Furthermore, space perception was associated with atrophy that predominantly represents the right-dorsal and right-ventral factors. However, individual participant profiles revealed that the large majority expressed multiple atrophy factors and had mixed clinical profiles with impairments across multiple domains, rather than displaying a discrete clinical-radiologic phenotype. CONCLUSION: Our results indicate that specific brain behavior networks are vulnerable in PCA, but most individuals display a constellation of affected brain regions and symptoms, indicating that classification into 4 mutually exclusive variants is unlikely to be clinically useful.


Assuntos
Atrofia/patologia , Córtex Cerebral/patologia , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/patologia , Idoso , Atrofia/classificação , Teorema de Bayes , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo
8.
Biol Psychiatry ; 86(10): 779-791, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515054

RESUMO

BACKGROUND: There is considerable interest in a dimensional transdiagnostic approach to psychiatry. Most transdiagnostic studies have derived factors based only on clinical symptoms, which might miss possible links between psychopathology, cognitive processes, and personality traits. Furthermore, many psychiatric studies focus on higher-order association brain networks, thereby neglecting the potential influence of huge swaths of the brain. METHODS: A multivariate data-driven approach (partial least squares) was used to identify latent components linking a large set of clinical, cognitive, and personality measures to whole-brain resting-state functional connectivity patterns across 224 participants. The participants were either healthy (n = 110) or diagnosed with bipolar disorder (n = 40), attention-deficit/hyperactivity disorder (n = 37), schizophrenia (n = 29), or schizoaffective disorder (n = 8). In contrast to traditional case-control analyses, the diagnostic categories were not used in the partial least squares analysis but were helpful for interpreting the components. RESULTS: Our analyses revealed three latent components corresponding to general psychopathology, cognitive dysfunction, and impulsivity. Each component was associated with a unique whole-brain resting-state functional connectivity signature and was shared across all participants. The components were robust across multiple control analyses and replicated using independent task functional magnetic resonance imaging data from the same participants. Strikingly, all three components featured connectivity alterations within the somatosensory-motor network and its connectivity with subcortical structures and cortical executive networks. CONCLUSIONS: We identified three distinct dimensions with dissociable (but overlapping) whole-brain resting-state functional connectivity signatures across healthy individuals and individuals with psychiatric illness, providing potential intermediate phenotypes that span diagnostic categories. Our results suggest expanding the focus of psychiatric neuroscience beyond higher-order brain networks.


Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno Bipolar/fisiopatologia , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Conectoma , Feminino , Humanos , Comportamento Impulsivo , Masculino , Análise Multivariada , Psicopatologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto Jovem
9.
Biomed Opt Express ; 7(9): 3299-3322, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699100

RESUMO

The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.

10.
Phys Med Biol ; 60(5): 1965-87, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25674998

RESUMO

Statistical iterative reconstruction algorithms have shown potential to improve cone-beam CT (CBCT) image quality. Most iterative reconstruction algorithms utilize prior knowledge as a penalty term in the objective function. The penalty term greatly affects the performance of a reconstruction algorithm. The total variation (TV) penalty has demonstrated great ability in suppressing noise and improving image quality. However, calculated from the first-order derivatives, the TV penalty leads to the well-known staircase effect, which sometimes makes the reconstructed images oversharpen and unnatural. In this study, we proposed to use a second-order derivative penalty that involves the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The second-order penalty retains some of the most favorable properties of the TV penalty like convexity, homogeneity, and rotation and translation invariance, and has a better ability in preserving the structures of gradual transition in the reconstructed images. An effective algorithm was developed to minimize the objective function with the majorization-minimization (MM) approach. The experiments on a digital phantom and two physical phantoms demonstrated the priority of the proposed penalty, particularly in suppressing the staircase effect of the TV penalty.


Assuntos
Algoritmos , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Cabeça/diagnóstico por imagem , Imagens de Fantasmas , Humanos , Modelos Teóricos , Interpretação de Imagem Radiográfica Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA