RESUMO
Because global anthropogenic activities cause vast biodiversity loss, human dimensions research is essential to forming management plans applicable to biodiversity conservation outside wilderness areas. Engaging public participation is crucial in this context to achieve social and environmental benefits. However, knowledge gaps remain in understanding how a balance between conservation and public demands can be reached and how complicated sociocultural contexts in the Anthropocene can be incorporated in conservation planning. We examined China's nationwide conflict between free-ranging cats (owned cats that are allowed to go outdoors or homeless cats living outdoors) and wildlife to examine how a consensus between compassion and biodiversity conservation can help in decision-making. We surveyed a random sample of people in China online. Over 9000 questionnaires were completed (44.2% response). In aggregate, respondents reported approximately 29 million free-ranging owned cats and that over 5 million domestic cats per year become feral in mainland China. Respondents who were cat owners, female, and religious were more likely to deny the negative impacts of cats on wildlife and ongoing management strategies and more supportive of stray cat shelters, adoption, and community-based fund raising than nonowners, male, and nonreligious respondents (p < 0.05). Free-ranging cat ownership and abandonment occurred less with owners with more knowledge of biodiversity and invasive species than with respondents with less knowledge of these subjects (p < 0.05). We recommend that cat enthusiasts and wildlife conservationists participate in community-based initiatives, such as campaigns to keep cats indoors. Our study provides a substantially useful framework for other regions where free-ranging cats are undergoing rapid expansion.
Retos y oportunidades de las dimensiones humanas detrás del conflicto entre gatos y fauna Resumen Debido a que las actividades antropogénicas globales causan una enorme pérdida de la biodiversidad, la investigación sobre las dimensiones humanas es esencial para generar planes de manejo aplicables a la conservación de la biodiversidad fuera de las áreas silvestres. Es muy importante lograr que el público participe en este contexto para obtener los beneficios sociales y ambientales. Sin embargo, todavía existen vacíos en el conocimiento sobre cómo lograr el balance entre la conservación y las demandas públicas y cómo incorporar los contextos socioculturales complejos del Antropoceno a la planeación de la conservación. Analizamos el conflicto nacional entre los gatos libres (gatos callejeros o gatos domésticos que se les permite salir) y la fauna en China para estudiar cómo un consenso entre la compasión y la conservación de la biodiversidad puede ayudar en la toma de decisiones. Encuestamos en línea a una muestra aleatoria de personas en China. Se completaron más de 9000 cuestionarios (44.2% de respuesta). En total, los respondientes reportaron un aproximado de 29 millones de gatos libres y que más de cinco millones de gatos domésticos se vuelven ferales al año en China. Quienes respondieron y son dueños de gatos, mujeres y religiosos tuvieron la mayor probabilidad de negar los impactos negativos de los gatos sobre la fauna y de las estrategias actuales de manejo y de mostrar más apoyo por los refugios de gatos abandonados, la adopción y de la recaudación de fondos comunitaria que quienes no son dueños, no son religiosos y son hombres (p < 0.05). La propiedad de gatos libres y el abandono ocurrieron menos con los dueños con más conocimiento sobre la biodiversidad y las especies invasoras que con los respondientes con menos conocimiento sobre estos temas (p < 0.05). Recomendamos que los aficionados a los gatos y los conservacionistas de la fauna participen en las iniciativas comunitarias; por ejemplo, campañas para mantener a los gatos dentro de casa. Nuestro estudio proporciona un marco sustancialmente útil para otras regiones en donde los gatos libres se encuentran en rápida expansión.
Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Propriedade , Conservação dos Recursos Naturais/métodos , Animais , Gatos/fisiologia , China , Humanos , Biodiversidade , Masculino , Feminino , Inquéritos e QuestionáriosRESUMO
An assessment of animal roadkill can help develop road mitigation measures. This article is the first to report data on animal-vehicle collisions (AVCs) in Nanjing, a supercity in eastern China. The research was conducted on a 224.27 km stretch of nine roads in Nanjing. In the period, between November 2020 and October 2021, 26 fortnightly monitoring missions were conducted to gather roadkill carcasses so that we could analyze their temporal and spatial distribution patterns. A total of 259 carcasses were collected, comprising 22 different species, of which 46.42% were mammals and 48.81% were birds. Cats and dogs are the most roadkill mammals, and blackbirds and sparrows are the most roadkill birds. The temporal analysis demonstrated that the peak of vertebrate roadkill occurred from May to July. Spatial analysis showed that the distribution patterns of vertebrate roadkill on different roads varied with a generally non-random distribution and aggregation. By mapping accidents using kernel density analysis, we were able to pinpoint locations that were at high risk for roadkill. Due to the fortnightly survey, our results would underestimate the casualties, even if, our study suggests that the problem of car accidents due to animals should be a cause for concern, and the results of the analysis of temporal and spatial patterns contribute to the establishment of mitigation measures.
Assuntos
Aves Canoras , Vertebrados , Animais , Gatos , Cães , Mamíferos , Análise Espacial , Inquéritos e QuestionáriosRESUMO
As the global population approaches 10 billion by 2050, the critical need to ensure food security becomes increasingly pronounced. In response to the urgent problems posed by global population growth, our study adds to the growing body of knowledge in the field of alternative proteins, entomophagy, insect-based bioactive proteolysates, and peptides. It also provides novel insights with essential outcomes for guaranteeing a safe and sustainable food supply in the face of rising global population demands. These results offer insightful information to researchers and policymakers tackling the intricate relationship between population expansion and food supplies. Unfortunately, conventional agricultural practices are proving insufficient in meeting these demands. Pursuing alternative proteins and eco-friendly food production methods has gained urgency, embracing plant-based proteins, cultivated meat, fermentation, and precision agriculture. In this context, insect farming emerges as a promising strategy to upcycle agri-food waste into nutritious protein and fat, meeting diverse nutritional needs sustainably. A thorough analysis was conducted to evaluate the viability of insect farming, investigate insect nutrition, and review the techniques and functional properties of protein isolation. A review of peptide generation from insects was conducted, covering issues related to hydrolysate production, protein extraction, and peptide identification. The study addresses the nutritional value and global entomophagy habits to elucidate the potential of insects as sources of peptides and protein. This inquiry covers protein and hydrolysate production, highlighting techniques and bioactive peptides. Functional properties of insect proteins' solubility, emulsification, foaming, gelation, water-holding, and oil absorption are investigated. Furthermore, sensory aspects of insect-fortified foods as well as challenges, including Halal and Kosher considerations, are explored across applications. Our review underscores insects' promise as sustainable protein and peptide contributors, offering recommendations for further research to unlock their full potential.
RESUMO
In the title compound, [KLu(C(2)O(4))(2)(H(2)O)(4)](n), the Lu(III) ion lies on a site of [Formula: see text] symmetry in a dodeca-hedron defined by eight O atoms from four oxalate ligands. The K atom lies on another site of the same symmetry and is coordinated by four oxalate O atoms and four O water atoms. The mid-point of the C-C bond of the oxalate group lies on an inversion center. In the packing structure, each oxalate ligand links two Lu(III) and two K atoms, forming a three-dimensional open framework with channels running along [001]. Inter-molecular O-Hâ¯O hydrogen bonds occur.
RESUMO
Foodborne illnesses associated with fresh produce have attracted increasing attention in the food industry, scientific and public health communities. Studies have shown that surface properties of fresh produce can affect bacterial attachment and colonization, yet the mechanisms involved remain poorly understood. In our previous work, using colloids as bacterial surrogates, we demonstrated that colloid retention on fresh produce was controlled by water retention/distribution on produce surfaces, which were in turn governed by produce surface properties. However, high variabilities among the natural samples and multiple factors that were simultaneously involved made it difficult for interpreting the results and in pinpointing the mechanisms responsible for the observed colloid retention behavior. To better evaluate the mechanisms, polydimethylsiloxane (PDMS) replicas of tomato, lettuce, and spinach were fabricated and compared with fresh produce surfaces in this study. The PDMS replicas thoroughly preserved the surface topographical features of their natural counterparts while having identical chemical properties (for example, hydrophobicity), thus, allowing for the separation of surface topography/roughness and hydrophobicity effects. We found that residual water retention/distribution and colloid retention on the PDMS replicas were consistent with the results observed on the corresponding fresh produce surfaces, but had smaller deviations from the respective means when compared to the natural surfaces. The use of PDMS replicas improved experimental reproducibility, and enabled differentiation on the effects of surface hydrophobicity and surface roughness on colloid retention, thus, allowed more rigorous elucidation of the underlying mechanisms. Therefore, PDMS replicas could be used as surrogates of fresh produce for mechanistic studies of surface-bacteria interactions. PRACTICAL APPLICATION: This work demonstrates the feasibility of using polydimethylsiloxane (PDMS) to simulate fresh produce surfaces for studying interactions between produce surfaces and colloids, including bacteria. Although it is more realistic to use fruit or vegetable surfaces, the difficulties of working with natural surfaces that are heterogeneous and variable hinder systematic and mechanistic studies. The use of PDMS replicas can eliminate these difficulties and improve experimental reproducibility. This study demonstrated that PDMS replicas could adequately represent the topographical features of natural produce surfaces; the results on colloid retention provided insight into fresh produce contamination and the development of effective decontamination strategies.
Assuntos
Coloides/química , Dimetilpolisiloxanos/química , Contaminação de Alimentos , Modelos Químicos , Propriedades de Superfície , Verduras , Descontaminação , Frutas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactuca , Solanum lycopersicum , Reprodutibilidade dos Testes , Spinacia oleraceaRESUMO
Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination.