Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Virol ; 97(3): e0001123, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877072

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum. Oligomannose-type glycosylation has been identified at the N78 site. Here, the unbiased molecular functions of ORF8 are also demonstrated. Via an immunoglobulin-like fold in a glycan-independent manner, both exogenous and endogenous ORF8 interacts with human calnexin and HSPA5. The key ORF8-binding sites of Calnexin and HSPA5 are indicated on the globular domain and the core substrate-binding domain, respectively. ORF8 induces species-dependent endoplasmic reticulum stress-like responses in human cells exclusively via the IRE1 branch, including intensive HSPA5 and PDIA4 upregulation, with increases in other stress-responding effectors, including CHOP, EDEM and DERL3. ORF8 overexpression facilitates SARS-CoV-2 replication. Both stress-like responses and viral replication induced by ORF8 have been shown to result from triggering the Calnexin switch. Thus, ORF8 serves as a key unique virulence gene of SARS-CoV-2, potentially contributing to COVID-19-specific and/or human-specific pathogenesis. IMPORTANCE Although SARS-CoV-2 is basically regarded as a homolog of SARS-CoV, with their genomic structure and the majority of their genes being highly homologous, the ORF8 genes of SARS-CoV and SARS-CoV-2 are distinct. The SARS-CoV-2 ORF8 protein also shows little homology with other viral or host proteins and is thus regarded as a novel special virulence gene of SARS-CoV-2. The molecular function of ORF8 has not been clearly known until now. Our results reveal the unbiased molecular characteristics of the SARS-CoV-2 ORF8 protein and demonstrate that it induces rapidly generated but highly controllable endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin in human but not mouse cells, providing an explanation for the superficially known in vivo virulence discrepancy of ORF8 between SARS-CoV-2-infected patients and mouse.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Calnexina/genética , SARS-CoV-2/genética , Replicação Viral
2.
J Virol ; 97(11): e0110123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916835

RESUMO

IMPORTANCE: Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.


Assuntos
Proteção Cruzada , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Furões , Influenza Aviária , Vacinas contra Influenza/genética , Vacinas Atenuadas , Infecções por Orthomyxoviridae/prevenção & controle
3.
J Med Virol ; 96(1): e29336, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193530

RESUMO

Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Camundongos , SARS-CoV-2 , RNA Ribossômico 16S/genética , Modelos Animais de Doenças
4.
Wei Sheng Yan Jiu ; 53(3): 472-486, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38839590

RESUMO

OBJECTIVE: To comprehensively analyze the trace nutrient contents in take-away meals, the simultaneous detection method of common vitamins in take-away meals were explored based on the samples' matrix, and the content of trace nutrients in take-away meals was analyzed combined with inductively coupled plasma-mass spectrometry(ICP-MS) detection of common elements. METHODS: Fifty-seven take-away meals were collected randomly and analyzed. Vitamins were determined by high performance liquid chromatography-ultraviolet detector tandem fluorescence detector after pretreatment of samples including enzymatic digestion, hydrolysis and extraction. The separation was performed on a C_(18) column(250 mm×4.6 mm, 5 µm) with ion-pair acid reagents as the mobile phase for water-soluble vitamins and methanol for fat-soluble vitamins. Vitamin B_1, vitamin B_2, nicotinic acid, nicotinamide and vitamin A were detected by ultraviolet detector(UVD), while vitamin B_6 and E by fluorescence detector(FLD). Elemental analysis of calcium, magnesium, sodium, potassium, zinc, selenium and copper in the take-away meals was carried out according to GB 5009.268-2016 by ICP-MS to comprehensively evaluate the contents of micronutrients. RESULTS: Through optimization of chromatography and sample pretreatment conditions, the sensitivity of the established detection method can meet the needs of micronutrient evaluation with the detection limits and quantification limits of vitamins in the range of 0.002-0.098 mg/100 g and 0.007-0.327 mg/100 g, respectively. Good precision was obtained(<10%). The spiked recovery rates were 80.5%-103.8%(n=6). The result showed that the contents of micronutrients in take-away meals were generally low. The detection rates of vitamins ranged from 21.1% to 98.2%. CONCLUSION: The proposed method is simple and sensitive, and the contents of vitamins and elements determined were low in the collected take-away meals.


Assuntos
Micronutrientes , Micronutrientes/análise , Cromatografia Líquida de Alta Pressão/métodos , Vitaminas/análise , Espectrometria de Massas/métodos , Análise de Alimentos/métodos , Oligoelementos/análise , Refeições
5.
J Virol ; 95(18): e0060021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34106002

RESUMO

Coronaviruses are commonly characterized by a unique discontinuous RNA transcriptional synthesis strategy guided by transcription-regulating sequences (TRSs). However, the details of RNA synthesis in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been fully elucidated. Here, we present a time-scaled, gene-comparable transcriptome of SARS-CoV-2, demonstrating that ACGAAC functions as a core TRS guiding the discontinuous RNA synthesis of SARS-CoV-2 from a holistic perspective. During infection, viral transcription, rather than genome replication, dominates all viral RNA synthesis activities. The most highly expressed viral gene is the nucleocapsid gene, followed by ORF7 and ORF3 genes, while the envelope gene shows the lowest expression. Host transcription dysregulation keeps exacerbating after viral RNA synthesis reaches a maximum. The most enriched host pathways are metabolism related. Two of them (cholesterol and valine metabolism) affect viral replication in reverse. Furthermore, the activation of numerous cytokines emerges before large-scale viral RNA synthesis. IMPORTANCE SARS-CoV-2 is responsible for the current severe global health emergency that began at the end of 2019. Although the universal transcriptional strategies of coronaviruses are preliminarily understood, the details of RNA synthesis, especially the time-matched transcription level of each SARS-CoV-2 gene and the principles of subgenomic mRNA synthesis, are not clear. The coterminal subgenomic mRNAs of SARS-CoV-2 present obstacles in identifying the expression of most genes by PCR-based methods, which are exacerbated by the lack of related antibodies. Moreover, SARS-CoV-2-related metabolic imbalance and cytokine storm are receiving increasing attention from both clinical and mechanistic perspectives. Our transcriptomic research provides information on both viral RNA synthesis and host responses, in which the transcription-regulating sequences and transcription levels of viral genes are demonstrated, and the metabolic dysregulation and cytokine levels identified at the host cellular level support the development of novel medical treatment strategies.


Assuntos
COVID-19/genética , Células Epiteliais/metabolismo , Pulmão/metabolismo , RNA Mensageiro/genética , SARS-CoV-2/isolamento & purificação , Transcriptoma , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Pulmão/virologia , RNA Mensageiro/metabolismo , Células Vero , Replicação Viral
6.
Virol J ; 18(1): 230, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809668

RESUMO

BACKGROUND: In 2011, a new influenza virus, named Influenza D Virus (IDV), was isolated from pigs, and then cattle, presenting influenza-like symptoms. IDV is one of the causative agents of Bovine Respiratory Disease (BRD), which causes high morbidity and mortality in feedlot cattle worldwide. To date, the molecular mechanisms of IDV pathogenicity are unknown. Recent IDV outbreaks in cattle, along with serological and genetic evidence of IDV infection in humans, have raised concerns regarding the zoonotic potential of this virus. Influenza virus polymerase is a determining factor of viral pathogenicity to mammals. METHODS: Here we take a prospective approach to this question by creating a random mutation library about PB2 subunit of the IDV viral polymerase to test which amino acid point mutations will increase viral polymerase activity, leading to increased pathogenicity of the virus. RESULTS: Our work shows some exact sites that could affect polymerase activities in influenza D viruses. For example, two single-site mutations, PB2-D533S and PB2-G603Y, can independently increase polymerase activity. The PB2-D533S mutation alone can increase the polymerase activity by 9.92 times, while the PB2-G603Y mutation increments the activity by 8.22 times. CONCLUSION: Taken together, our findings provide important insight into IDV replication fitness mediated by the PB2 protein, increasing our understanding of IDV replication and pathogenicity and facilitating future studies.


Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Aminoácidos/genética , Animais , Bovinos , Mutação , Suínos , Thogotovirus/genética , Replicação Viral
7.
Arch Virol ; 164(8): 2023-2029, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111259

RESUMO

We previously obtained mouse-adapted variants of H1N2 avian influenza virus that contained PB2-L134H, PB2-I647L, PB2-D701N, HA-G228S, and M1-D231N mutations. Here, we analyzed the effects of these mutations on viral pathogenicity in a mammalian model. By evaluating the virulence of mouse-adapted H1N2 variants at different generations, we found that the PB2-D701N and HA-G228S mutations both contribute to the virulence of this virus in mammals. Furthermore, we found that the PB2-D701N and HA-G228S mutations both enhance the ability of the virus to replicate in vivo and in vitro and that the PB2-D701N substitution results in an expansion of viral tissue tropism. These results suggest that the PB2-D701N mutation and the HA-G228S mutation are the major mammalian determinants of H1N2 virus. These results help us to understand more about the mechanisms by which influenza viruses adapt to mammals, and monitoring of these mutations can be used in continuous influenza surveillance to assess the pandemic potential of avian influenza virus variants.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N2/genética , Influenza Aviária/virologia , Mutação/genética , Proteínas Virais/genética , Virulência/genética , Adaptação Biológica/genética , Substituição de Aminoácidos/genética , Animais , Aves , Linhagem Celular , Cães , Feminino , Células Madin Darby de Rim Canino , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Fenótipo , Replicação Viral/genética
8.
Arch Virol ; 163(2): 401-410, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29090366

RESUMO

H5 clade 2.3.4.4 influenza A viruses pose a potential threat to public health and are a cause of public concern. Here, we generated mouse-adapted viruses of a waterfowl-origin H5N5 virus (H5 clade 2.3.4.4) to identify adaptive changes that confer increased virulence in mammals. After two passages, we obtained a mouse-adapted H5N5 virus that contained single amino acid substitutions in the PB2 (E627K) and hemagglutinin (HA) (F430L) proteins. We then analyzed the impact of these individual amino acid substitutions on viral pathogenicity to mammals. The 50% mouse lethal dose (MLD50) of the H5N5 virus containing the PB2-E627K substitution or the HA-F430L substitution was reduced 1000-fold or 3.16-fold, respectively. Furthermore, we found that PB2-E627K enhanced viral replication kinetics in vitro and in vivo. These results suggest that the PB2-E627K and HA-F430L substitutions are important for adaptation of H5N5 AIVs to mammals. These findings emphasize the importance of continued surveillance of poultry for H5N5 AIVs with these amino acid substitutions.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Anseriformes/virologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/enzimologia , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Virulência
9.
Nanotechnology ; 27(43): 43LT01, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655294

RESUMO

Nanomagnetic logic has emerged as a potential replacement for traditional Complementary Metal Oxide Semiconductor (CMOS) based logic because of superior energy-efficiency (Salahuddin and Datta 2007 Appl. Phys. Lett. 90 093503, Cowburn and Welland 2000 Science 287 1466-68). One implementation of nanomagnetic logic employs shape-anisotropic (e.g. elliptical) ferromagnets (with two stable magnetization orientations) as binary switches that rely on dipole-dipole interaction to communicate binary information (Cowburn and Welland 2000 Science 287 1466-8, Csaba et al 2002 IEEE Trans. Nanotechnol. 1 209-13, Carlton et al 2008 Nano Lett. 8 4173-8, Atulasimha and Bandyopadhyay 2010 Appl. Phys. Lett. 97 173105, Roy et al 2011 Appl. Phys. Lett. 99 063108, Fashami et al 2011 Nanotechnology 22 155201, Tiercelin et al 2011 Appl. Phys. Lett. 99 , Alam et al 2010 IEEE Trans. Nanotechnol. 9 348-51 and Bhowmik et al 2013 Nat. Nanotechnol. 9 59-63). Normally, circular nanomagnets are incompatible with this approach since they lack distinct stable in-plane magnetization orientations to encode bits. However, circular magnetoelastic nanomagnets can be made bi-stable with a voltage induced anisotropic strain, which provides two significant advantages for nanomagnetic logic applications. First, the shape-anisotropy energy barrier is eliminated which reduces the amount of energy required to reorient the magnetization. Second, the in-plane size can be reduced (∼20 nm) which was previously not possible due to thermal stability issues. In circular magnetoelastic nanomagnets, a voltage induced strain stabilizes the magnetization even at this size overcoming the thermal stability issue. In this paper, we analytically demonstrate the feasibility of a binary 'logic wire' implemented with an array of circular nanomagnets that are clocked with voltage-induced strain applied by an underlying piezoelectric substrate. This leads to an energy-efficient logic paradigm orders of magnitude superior to existing CMOS-based logic that is scalable to dimensions substantially smaller than those for existing nanomagnetic logic approaches. The analytical approach is validated with experimental measurements conducted on dipole coupled Nickel (Ni) nanodots fabricated on a PMN-PT (Lead Magnesium Niobate-Lead Titanate) sample.

10.
J Biol Chem ; 289(14): 9600-10, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24569998

RESUMO

Furanocoumarin imperatorin is the major active component of Angelica dahurica root extracts, widely used in traditional medicine to treat headache, toothache, and orbital eye pain. In this study, we investigated the mechanisms that may underlie the pain-relieving effects of the compound. We found that imperatorin significantly inhibited formalin- and capsaicin-induced nocifensive responses but did not alter baseline thermal withdrawal thresholds in the rat. We established that imperatorin is a weak agonist of TRPV1, a channel implicated in detecting several noxious stimuli, exhibiting a 50% effective concentration (EC50) of 12.6 ± 3.2 µM. A specific TRPV1 antagonist, JNJ-17203212 (0.5 µM), potently inhibited imperatorin-induced TRPV1 activation. Site-directed mutagenesis studies revealed that imperatorin most likely acted via a site adjacent to or overlapping with the TRPV1 capsaicin-binding site. TRPV1 recovery from desensitization was delayed in the presence of imperatorin. Conversely, imperatorin sensitized TRPV1 to acid activation but did not affect the current amplitude and/or the activation-inactivation properties of Na(v)1.7, a channel important for transmission of nociceptive information. Thus, our data indicate that furanocoumarins represent a novel group of TRPV1 modulators that may become important lead compounds in the drug discovery process aimed at developing new treatments for pain management.


Assuntos
Analgésicos/farmacologia , Fármacos Dermatológicos/farmacologia , Furocumarinas/farmacologia , Canais de Cátion TRPV/agonistas , Analgésicos/química , Angelica/química , Animais , Fármacos Dermatológicos/química , Furocumarinas/química , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Manejo da Dor/métodos , Medição da Dor , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
Biochem Biophys Res Commun ; 449(4): 455-9, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24853802

RESUMO

Natural small-molecule products are promising lead compounds for developing a generation of novel antimicrobials agents to meet the challenge of antibiotic-resistant pathogens. To facilitate the search for novel anti-virulence agents, we chose a virulence factor of Type Three Secretion System (T3SS) as a drug target to screen candidates from a small-molecule library in our laboratory. This study demonstrated fusaric acid had dramatically inhibitory effects on secretion of Salmonella island 1 (SPI-1) effector proteins and invasion of Salmonella into HeLa cells. Moreover, fusaric acid had no inhibitory effects on bacterial growth and viability of host cells. Protein HilA is a key regulator of SPI-1 in Salmonella, which affects transcription of SPI-1 effectors and SPI-1 apparatus genes. In this study, fusaric acid (FA) did not affect secretion of SPI-1 effectors in HilA over-expressed strain, suggesting it did not affect the transcription of SPI-1. In addition, fusaric acid did not affect the protein level of apparatus protein PrgH in SPI-1 needle complex. As a result, we proposed fusaric acid had an inhibitory effect on SPI-1 probably depending on its influence on SicA/InvF. In summary, fusaric acid is a novel inhibitor of T3SS with potential for further developing novel anti-virulence agents.


Assuntos
Proteínas de Bactérias/efeitos dos fármacos , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Ácido Fusárico/farmacologia , Salmonella typhimurium/patogenicidade , Fatores de Virulência/antagonistas & inibidores , Sistemas de Secreção Bacterianos/fisiologia , Células HeLa/microbiologia , Humanos , Infecções por Salmonella/tratamento farmacológico
12.
Nanotechnology ; 25(43): 435701, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25288449

RESUMO

Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model, assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. This paper presents analytical work intended to significantly improve the simulation of finite structures by fully coupling the LLG model with elastodynamics, i.e., the partial differential equations are intrinsically coupled. The coupled equations developed in this manuscript, along with the Stoner-Wohlfarth model and the LLG (constant strain) model are compared to experimental data on nickel nanostructures. The nickel nanostructures are 100 × 300 × 35 nm single domain elements that are fabricated on a Si/SiO2 substrate; these nanostructures are mechanically strained when they experience an applied magnetic field, which is used to generate M vs H curves. Results reveal that this paper's fully-coupled approach corresponds the best with the experimental data on coercive field changes. This more sophisticated modeling technique is critical for guiding the design process of future nanoscale strain-mediated multiferroic elements, such as those needed in memory systems.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38821004

RESUMO

BACKGROUND: Poisonings caused by plant toxins and mycotoxins occur frequently, which do great harm to human health and social public health safety. When a poisoning incident occurs, biological samples are commonly be used to conduct the detection of toxic substances and their metabolites for targeted clinical treatment and incident analysis. OBJECTIVE: To establish an efficient and accurate analysis method of 39 phytotoxins and mycotoxins in blood and urine by high performance liquid chromatography quadrupole tandem orbitrap mass spectrometry (HPLC-Orbitrap MS). METHOD: After 3 mL of methanol being added to 1 mL blood and urine respectively for extraction and protein precipitation, the supernatant was injected into HPLC-Orbitrap MS for analysis. The phytotoxins and mycotoxins were separated by Hypersil GOLD PFP column with gradient elution using methanol-5 mmol/L ammonium acetate as mobile phase. The data were collected in ESI positive ion mode using Full MS/dd-MS2 for mass spectrometry detection. RESULT: The mass database of 39 phytotoxins and mycotoxins was developed, and accurate qualitative analysis can be obtained by matching with the database using the proposed identification criteria. Limit of detections (LODs) were 1.34 × 10-4 âˆ¼ 1.92 ng/mL and 1.92 × 10-4 âˆ¼ 9.80 ng/mL for blood and urine samples, respectively. Limits of quantification (LOQ) of toxins in blood and urine ranged from 4.47 × 10-4 âˆ¼ 6.32 ng/mL and 6.39 × 10-4 âˆ¼ 32.67 ng/mL, respectively. Intra-day relative standard deviations (RSDs) were 0.79 % âˆ¼ 10.90 %, and inter-day RSDs were 1.08 % âˆ¼ 18.93 %. The recoveries can reach 90 % âˆ¼ 110 % with matrix matching calibration curves. CONCLUSION: The established method is simple and rapid to operate, which can complete the sample analysis within 30 min, providing technical support for clinical poisoning treatment and public health poisoning analysis.


Assuntos
Limite de Detecção , Micotoxinas , Micotoxinas/urina , Micotoxinas/sangue , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Espectrometria de Massas em Tandem/métodos
14.
Virus Res ; 345: 199378, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643857

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Vírus da Influenza B , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Vacinas Atenuadas , Animais , Camundongos , Vírus da Influenza B/imunologia , Vírus da Influenza B/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Administração Intranasal , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Imunoglobulina A/sangue , Modelos Animais de Doenças , Imunoglobulina G/sangue , Carga Viral , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia
15.
Antimicrob Agents Chemother ; 57(5): 2191-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23459474

RESUMO

Bacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability. Salmonella enterica serovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliC in vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator genes hilD, hilC, and rtsA to repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription of hha and hns, implying that Csn-B probably affected the secretion of effectors through the Hha-H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistant Salmonella.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fenilacetatos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas , Células HeLa , Humanos , Regiões Promotoras Genéticas , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
16.
ACS Omega ; 8(29): 26055-26064, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521655

RESUMO

Porous Bi2O3-Bi2S3 composite sheets were constructed through a combinational methodology of chemical bath deposition and hydrothermal reaction. The Na2S precursor concentration in the hydrothermal solution was varied to understand the correlation between the vulcanization degree and structure evolution of the porous Bi2O3-Bi2S3 composite sheets. The control of the etching rate of the Bi2O3 sheet template and the regrowth rate of Bi2S3 crystallites via suitable sulfide precursor concentration during the hydrothermal reaction utilizes the formation of porous Bi2O3-Bi2S3 sheets. Due to the presence of Bi2S3 crystallites and porous structure in the Bi2O3-Bi2S3 composites, the improved visible-light absorption ability and separation efficiency of photogenerated charge carriers are achieved. Furthermore, the as-synthesized Bi2O3-Bi2S3 composite sheets obtained from vulcanization with a 0.01M Na2S precursor display highly enhanced photocatalytic degradation toward methyl orange (MO) dyes compared with the pristine Bi2O3 and Bi2S3. The porous Bi2O3-Bi2S3 sheet system shows high surface active sites, fast transfer, high-efficiency separation of photoinduced charge carriers, and enhanced redox capacity concerning their constituent counterparts. This study affords a promising approach to constructing Bi2O3-based Z-scheme composites with a suitable microstructure and Bi2O3/Bi2S3 phase ratio for photoactive device applications.

17.
Front Microbiol ; 14: 1175188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350787

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is responsible for the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the host, and the gastrointestinal tract is a potential infection site as this receptor is expressed on it. Multiple studies have indicated that an increasing number of COVID-19 patients presented with gastrointestinal symptoms that are highly associated with disease severity. Moreover, emerging evidence has demonstrated that alterations in the gut immune microenvironment induced by intestinal SARS-CoV-2 infection can regulate respiratory symptoms. Therefore, targeting the intestines may be a candidate therapeutic strategy in patients with COVID-19; however, no mouse model can serve as an appropriate infection model for the development of fatal pneumonia while mimicking intestinal infection. In this study, a novel human ACE2 knock-in (KI) mouse model (or hACE2-KI) was systemically compared with the popular K18-hACE2 mice; it showed differences in the distribution of lung and intestinal infections and pathophysiological characteristics. These newly generated hACE2-KI mice were susceptible to intranasal infection with SARS-CoV-2, and not only developed mild to severe lung injury, but also acquired intestinal infection. Consequently, this model can be a useful tool for studying intestinal SARS-CoV-2 infection and developing effective therapeutic strategies.

18.
Chin Med ; 18(1): 144, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919750

RESUMO

BACKGROUND: Influenza viruses, especially Influenza A virus and Influenza B virus, are respiratory pathogens and can cause seasonal epidemics and pandemics. Severe influenza viruses infection induces strong host-defense response and excessive inflammatory response, resulting in acute lung damage, multiple organ failure and high mortality. Isoquercitrin is a Chinese medicine monomer, which was reported to have multiple biological activities, including antiviral activity against HSV, IAV, SARS-CoV-2 and so on. Aims of this study were to assess the in vitro anti-IAV and anti-IBV activity, evaluate the in vivo protective efficacy against lethal infection of the influenza virus and searched for the more optimal method of drug administration of isoquercitrin. METHODS: In vitro infection model (MDCK and A549 cells) and mouse lethal infection model of Influenza A virus and Influenza B virus were used to evaluate the antiviral activity of isoquercitrin. RESULTS: Isoquercitrin could significantly suppress the replication in vitro and in vivo and reduced the mortality of mouse lethal infection models. Compared with virus infection group, isoquercitrin mitigated lung and multiple organ damage. Moreover, isoquercitrin blocked hyperproduction of cytokines induced by virus infection via inactivating NF-κB signaling. Among these routes of isoquercitrin administration, intramuscular injection is a better drug delivery method. CONCLUSION: Isoquercitrin is a potential Chinese medicine monomer Against Influenza A Virus and Influenza B Virus infection.

19.
Emerg Microbes Infect ; 12(1): e2184177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36877121

RESUMO

Wild aquatic birds are the primary hosts of H13 avian influenza viruses (AIVs). Herein, we performed a genetic analysis of two H13 AIVs isolated from wild birds in China and evaluated their infection potential in poultry to further explore the potential for transmission from wild aquatic birds to poultry. Our results showed that the two strains belong to different groups, one strain (A/mallard/Dalian/DZ-137/2013; abbreviated as DZ137) belongs to Group I, whereas the other strain (A/Eurasian Curlew/Liaoning/ZH-385/2014; abbreviated as ZH385) belongs to Group III. In vitro experiments showed that both DZ137 and ZH385 can replicate efficiently in chicken embryo fibroblast cells. We found that these H13 AIVs can also efficiently replicate in mammalian cell lines, including human embryonic kidney cells and Madin-Darby canine kidney cells. In vivo experiments showed that DZ137 and ZH385 can infect 1-day-old specific pathogen-free (SPF) chickens, and that ZH385 has a higher replication ability in chickens than DZ137. Notably, only ZH385 can replicate efficiently in 10-day-old SPF chickens. However, neither DZ137 nor ZH385 can replicate well in turkeys and quails. Both DZ137 and ZH385 can replicate in 3-week-old mice. Serological surveillance of poultry showed a 4.6%-10.4% (15/328-34/328) antibody-positive rate against H13 AIVs in farm chickens. Our findings indicate that H13 AIVs have the replication ability in chickens and mice and may have a risk of crossing the host barrier from wild aquatic birds to poultry or mammals in the future.


Assuntos
Vírus da Influenza A , Influenza Aviária , Embrião de Galinha , Animais , Cães , Camundongos , Humanos , Aves Domésticas , Galinhas , Animais Selvagens , Mamíferos , Filogenia
20.
Virol Sin ; 38(1): 119-127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36450323

RESUMO

Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 â€‹µg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Camundongos , NF-kappa B/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A/fisiologia , Transdução de Sinais , Taurina/farmacologia , Taurina/uso terapêutico , Camundongos Endogâmicos BALB C , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA