Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(38): 15046-15057, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31480847

RESUMO

Herein we quantitatively investigate how metal ion Lewis acidity and steric properties influence the kinetics and thermodynamics of dioxygen binding versus release from structurally analogous Mn-O2 complexes, as well as the barrier to Mn peroxo O-O bond cleavage, and the reactivity of Mn oxo intermediates. Previously we demonstrated that the steric and electronic properties of MnIII-OOR complexes containing N-heterocyclic (NAr) ligand scaffolds can have a dramatic influence on alkylperoxo O-O bond lengths and the barrier to alkylperoxo O-O bond cleavage. Herein, we examine the dioxygen reactivity of a new MnII complex containing a more electron-rich, less sterically demanding NAr ligand scaffold, and compare it with previously reported MnII complexes. Dioxygen binding is shown to be reversible with complexes containing the more electron-rich metal ions. The kinetic barrier to O2 binding and peroxo O-O bond cleavage is shown to correlate with redox potentials, as well as the steric properties of the supporting NAr ligands. The reaction landscape for the dioxygen chemistry of the more electron-rich complexes is shown to be relatively flat. A total of four intermediates, including a superoxo and peroxo species, are observed with the most electron-rich complex. Two new intermediates are shown to form following the peroxo, which are capable of cleaving strong X-H bonds. In the absence of a sacrificial H atom donor, solvent, or ligand, serves as a source of H atoms. With TEMPOH as sacrificial H atom donor, a deuterium isotope effect is observed (kH/kD = 3.5), implicating a hydrogen atom transfer (HAT) mechanism. With 1,4-cyclohexadiene, 0.5 equiv of benzene is produced prior to the formation of an EPR detected MnIIIMnIV bimetallic species, and 0.5 equiv after its formation.

2.
Inorg Chem ; 53(10): 5384-91, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24773522

RESUMO

A peroxide dianion (O2(2-)) can be isolated within the cavity of hexacarboxamide cryptand, [(O2)⊂mBDCA-5t-H6](2-), stabilized by hydrogen bonding but otherwise free of proton or metal-ion association. This feature has allowed the electron-transfer (ET) kinetics of isolated peroxide to be examined chemically and electrochemically. The ET of [(O2)⊂mBDCA-5t-H6](2-) with a series of seven quinones, with reduction potentials spanning 1 V, has been examined by stopped-flow spectroscopy. The kinetics of the homogeneous ET reaction has been correlated to heterogeneous ET kinetics as measured electrochemically to provide a unified description of ET between the Butler-Volmer and Marcus models. The chemical and electrochemical oxidation kinetics together indicate that the oxidative ET of O2(2-) occurs by an outer-sphere mechanism that exhibits significant nonadiabatic character, suggesting that the highest occupied molecular orbital of O2(2-) within the cryptand is sterically shielded from the oxidizing species. An understanding of the ET chemistry of a free peroxide dianion will be useful in studies of metal-air batteries and the use of [(O2)⊂mBDCA-5t-H6](2-) as a chemical reagent.


Assuntos
Peróxidos/química , Técnicas Eletroquímicas , Transporte de Elétrons , Íons/química , Cinética , Oxirredução
3.
J Am Chem Soc ; 135(15): 5631-40, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23470101

RESUMO

Transition-metal peroxos have been implicated as key intermediates in a variety of critical biological processes involving O2. Because of their highly reactive nature, very few metal-peroxos have been characterized. The dioxygen chemistry of manganese remains largely unexplored despite the proposed involvement of a Mn-peroxo, either as a precursor to, or derived from, O2, in both photosynthetic H2O oxidation and DNA biosynthesis. These are arguably two of the most fundamental processes of life. Neither of these biological intermediates has been observed. Herein we describe the dioxygen chemistry of coordinatively unsaturated [Mn(II)(S(Me2)N4(6-Me-DPEN))] (+) (1), and the characterization of intermediates formed en route to a binuclear mono-oxo-bridged Mn(III) product {[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(µ-O)}(2+) (2), the oxo atom of which is derived from (18)O2. At low-temperatures, a dioxygen intermediate, [Mn(S(Me2)N4(6-Me-DPEN))(O2)](+) (4), is observed (by stopped-flow) to rapidly and irreversibly form in this reaction (k1(-10 °C) = 3780 ± 180 M(-1) s(-1), ΔH1(++) = 26.4 ± 1.7 kJ mol(-1), ΔS1(++) = -75.6 ± 6.8 J mol(-1) K(-1)) and then convert more slowly (k2(-10 °C) = 417 ± 3.2 M(-1) s(-1), ΔH2(++) = 47.1 ± 1.4 kJ mol(-1), ΔS2(++) = -15.0 ± 5.7 J mol(-1) K(-1)) to a species 3 with isotopically sensitive stretches at νO-O(Δ(18)O) = 819(47) cm(-1), kO-O = 3.02 mdyn/Å, and νMn-O(Δ(18)O) = 611(25) cm(-1) consistent with a peroxo. Intermediate 3 releases approximately 0.5 equiv of H2O2 per Mn ion upon protonation, and the rate of conversion of 4 to 3 is dependent on [Mn(II)] concentration, consistent with a binuclear Mn(O2(2-)) Mn peroxo. This was verified by X-ray crystallography, where the peroxo of {[Mn(III)(S(Me2)N4(6-Me-DPEN)]2(trans-µ-1,2-O2)}(2+) (3) is shown to be bridging between two Mn(III) ions in an end-on trans-µ-1,2-fashion. This represents the first characterized example of a binuclear Mn(III)-peroxo, and a rare case in which more than one intermediate is observed en route to a binuclear µ-oxo-bridged product derived from O2. Vibrational and metrical parameters for binuclear Mn-peroxo 3 are compared with those of related binuclear Fe- and Cu-peroxo compounds.


Assuntos
Manganês/química , Compostos Organometálicos/química , Oxigênio/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
4.
J Am Chem Soc ; 133(32): 12418-21, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770365

RESUMO

We report the isolation, characterization, and reactions of the unsaturated complex L(tBu)Co (L(tBu) = bulky ß-diketiminate ligand). The unusual slipped κN,η(6)-arene binding mode in L(tBu)Co interconverts rapidly and reversibly with the traditional κ(2)N,N' ligation mode upon binding of Lewis bases, making it a "masked" two-coordinate complex. The mechanism of this isomerization is demonstrated using kinetic studies. L(tBu)Co is a stable yet reactive synthon for low-coordinate cobalt(I) complexes and is capable of cleaving the C-F bond in fluorobenzene.

5.
J Inorg Biochem ; 101(2): 305-12, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17134759

RESUMO

[2Fe2S] clusters with terminal N-ligation (His, Arg) and unique functions are increasingly recognized in biological systems. In this work three new [2Fe2S] clusters 1-3 with different 1,1'-dipyrrolmethane derivatives as chelating terminal ligands have been prepared and fully characterized, including by X-ray crystallography: (NEt(4))(2)[L(2)Fe(2)(mu-S)(2)] with L=Me(2)C(C(4)H(3)N)(2) (1), Ph(2)C(C(4)H(3)N)(2) (2), (CH(2))(5)C(C(4)H(3)N)(2) (3). These systems represent rare examples of synthetic [2Fe2S] complexes with N-donor capping ligands. While geometric parameters as well as spectroscopic and electrochemical characteristics of the new complexes are as anticipated, the chelating nature of the terminal ligands in 1-3 imparts a relatively high stability that will be advantageous for reactivity studies of the [2Fe2S] core.


Assuntos
Ferro/química , Pirróis/química , Enxofre/química , Sítios de Ligação , Cristalografia por Raios X , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Proteínas Ferro-Enxofre/química , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pirróis/síntese química
6.
Chem Commun (Camb) ; (18): 2090-1, 2002 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-12362907

RESUMO

A novel (mu-nitrido-diruthenium)-bridged 1-D coordination polymer was formed from reaction of K5[Ru2N(CN)10] with [Cu(en)2](ClO4)2; a similar reaction with [Cu(pn)2][(ClO4)2] (pn = 1,3-diaminopropane) gave ([Cu(pn)2]5[Ru2N(CN)10]2) as a discrete molecular compound; variable temperature susceptibility measurements show that there is a weak ferromagnetic interaction between the Cu(II) ions in 1-D polymer.

7.
Dalton Trans ; 42(13): 4427-35, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23338901

RESUMO

Two intermediates (2 and 3) are formed consecutively in the reaction of a diiron(III) complex [Fe(III)(2)(µ-O)(OH)(H(2)O)(TPA)(2)](ClO(4))(3) (TPA = tris(2-pyridylmethyl)amine, tris(picolyl)amine) with H(2)O(2) in CH(3)CN at -40 °C. Low-temperature stopped-flow studies showed that both species are kinetically competent in oxidation of phosphines and phenols. The first intermediate (2) reacts with substrates very rapidly (second-order rate constants reach 10(5)-10(6) M(-1) s(-1) for substituted triarylphosphines and 10(3)-10(5) M(-1) s(-1) for substituted phenols), in keeping with a diiron(IV)-oxo formulation. The second intermediate (3), a mixed-valent Fe(III)Fe(IV) species, is more stable than 2, and reacts with substrates more slowly (second-order rate constants range from 150 to 550 M(-1) s(-1) for triaryl phosphine oxidation, and from 18 to 790 M(-1) s(-1) for phenol oxidation). Reaction rates increase with increasing electron donating abilities of substituents, indicating that both 2 and 3 act as electrophilic oxidants.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Peróxido de Hidrogênio/química , Piridinas/química , Cinética , Oxirredução , Fenol/química , Fosfinas/química
8.
Dalton Trans ; (25): 4908-17, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19662283

RESUMO

The benzanellated analogues (NEt(4))(2)[Fe(2)S(2)(indolate)(4)] (2) and (NEt(4))(2)[Fe(2)S(2)(carbazolate)(4)] (3) of the previously reported parent (NEt(4))(2)[Fe(2)S(2)(pyrrolate)(4)] cluster (1) were synthesized and characterized spectroscopically. In contrast to 1 and 3, compound 2 can be applied as a versatile precursor in ligand exchange reactions with various thiophenols affording the thiophenolate-coordinate [2Fe-2S] clusters. Heteroaromatic thiols and chelating biphenols are suitable substrates in this conversion as well, providing a convenient access to a variety of new [2Fe-2S] ferredoxin analogues and related complexes. Several new S- and O-coordinate [2Fe-2S] clusters have been prepared and fully characterized, including five X-ray crystal structures.

9.
Inorg Chem ; 44(11): 3942-54, 2005 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-15907122

RESUMO

The syntheses and reactivities of sterically encumbered trans-dioxoosmium(VI) complexes containing Schiff-base ligands bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine (H2tBu-salch) and bis(3,5-dibromosalicylidene)-1,2-cyclohexane-diamine (H2Br-salch) are described. Reactions of [Os(VI)tBu-salch)O2] (1a) and [Os(VI)(Br-salch)O2] (1b) with PPh(3), p-X-arylamines (X = NO2, CN), N2H4 x H2O, Ph2NNH2, SOCl2, CF3CO2H, Br2, and I2 under reducing conditions gave [Os(II)(Br-salch)(OPPh3)2] (2), [Os(IV)(Br-salch)(p-X-C6H4NH)2] (3), [mu-O-{Os(IV)(tBu-salch)(p-NO2C6H4NH)}2] (4), [Os(II)(Br-salch)(N2)(H2O)] (5), [Os(IV)(tBu-salch)(OH)(Cl)] (6), [Os(IV)(tBu-salch)(OH)2] (7), [Os(IV)(tBu-salch)Cl2] (8), [Os(IV)(tBu-salch)(CF3CO2)2] (9), [Os(IV)(tBu-salch)Br2] (10), and [Os(IV)(tBu-salch)I2] (11), respectively. X-ray crystal structure determinations of [Os(IV)(Br-salch)(p-NO2C6H4NH)2] (3a), [Os(IV)(Br-salch)(p-CNC6H4NH)2] (3b), 6, 8, 9, and 11 reveal the Os-N(amido) distances to be 1.965(4)-1.995(1) A for the bis(amido) complexes, Os-Cl distances of 2.333(8)-2.3495(1) A for 6 and 8, Os-O(CF3CO2) distances of 2.025(6)-2.041(6) A for 9, and Os-I distances of 2.6884(6)-2.6970(6) A for 11. Upon UV irradiation, (1S,2S)-(1a) reacted with aryl-substituted alkenes to give the corresponding epoxides in moderate yields, albeit with no enantioselectivity. The (1R,2R)-6 catalyzed cyclopropanation of a series of substituted styrenes exhibited moderate to good enantioselectivity (up to 79% ee) and moderate trans selectivity.

10.
Inorg Chem ; 41(16): 4295-303, 2002 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12160420

RESUMO

From the reaction mixture of [M(II)(bpy)Cl(2)], the ligand 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and 2 equiv of a base (NaOCH(3)) in CH(3)CN under anaerobic conditions were obtained the blue-green neutral complexes [M(II)(L(AP)-H)(bpy)] (M = Pd (1), Pt (2)). (L(AP)-H)(2)(-) represents the o-amidophenolato dianion, (L(AP))(1)(-) is the o-aminophenolate(1-), (L(ISQ))(1)(-) is its one-electron-oxidized, pi-radical o-iminobenzosemiquinonate(1-), and (L(IBQ))(0) is the neutral quinone. Complexes 1 and 2 can be oxidized by ferrocenium hexafluorophosphate, yielding the paramagnetic salts [M(II)(L(ISQ))(bpy)]PF(6) (S = (1)/(2)) (M = Pd (1a), Pt (2a)). The reaction of PtCl(2), 2 equiv of H[L(AP)], and 4 equiv of base in CH(3)CN in the presence of air yields diamagnetic [Pt(L(ISQ))(2)] (3), which is shown to possess an electronic structure that is best described as a singlet diradical. Complexes 1, 1a, 2, 2a, and 3 have been structurally characterized by X-ray crystallography at 100 K. It is clearly established that O,N-coordinated (L(AP)-H)(2)(-) ligands have a distinctly different structure than the corresponding O,N-coordinated (L(ISQ))(1)(-) radicals. It is therefore possible to unambiguously assign the protonation and oxidation level of o-aminophenol derived ligands in coordination compounds. All complexes have been investigated by cyclic voltammetry, spectroelectrochemistry, EPR, and UV-vis spectroscopy. Complexes 1 and 2 can be reversibly oxidized to the [M(II)(L(ISQ))(bpy)](+) and [M(II)(L(IBQ))(pby)](2+) mono- and dications, respectively, and reduced to the [M(L(AP)-H)(bpy(*))](-) anion, where (bpy(*))(1)(-) is the radical anion of 2,2'-bipyridine. Complex 3 exhibits four reversible one-electron-transfer waves (two oxidations and two reductions) which are all shown to be ligand centered. The EPR spectra of the one-electron-reduced species [Pt(L(AP)-H)(L(ISQ))](-) (S = (1)/(2)) and of the one-electron-oxidized species [Pt(L(ISQ))(L(IBQ))](+) (S = (1)/(2)) in CH(2)Cl(2) solutions have been recorded. To gain a better understanding of the electronic structure of 3 and its monooxidized and reduced forms, relativistic DFT calculations have been carried out. Magnetic coupling parameters and hyperfine couplings were calculated and found to be in very good agreement with experiment. It is shown that both the one-electron oxidation and reduction of 3 are ligand centered. A simple MO model is developed in order to understand the EPR properties of the monocation and monoanion of 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA