Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Angiogenesis ; 26(1): 1-18, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35503397

RESUMO

Angiogenesis is an essential factor affecting the occurrence and development of solid tumors. SET And MYND Domain Containing 2 (SMYD2) serves as an oncogene in various cancers. However, whether SMYD2 is involved in tumor angiogenesis remains unclear. Here, we report that SMYD2 expression is associated with microvessel density in colorectal cancer (CRC) tissues. SMYD2 promotes CRC angiogenesis in vitro and in vivo. Mechanistically, SMYD2 physically interacts with HNRNPK and mediates lysine monomethylation at K422 of HNRNPK, which substantially increases RNA binding activity. HNRNPK acts by binding and stabilizing EGFL7 mRNA. As an angiogenic stimulant, EGFL7 enhances CRC angiogenesis. H3K4me3 maintained by PHF8 mediates the abnormal overexpression of SMYD2 in CRC. Moreover, targeting SMYD2 blocks CRC angiogenesis in tumor xenografts. Treatment with BAY-598, a functional inhibitor of SMYD2, can also synergize with apatinib in patient-derived xenografts. Overall, our findings reveal a new regulatory axis of CRC angiogenesis and provide a potential strategy for antiangiogenic therapy.


Assuntos
Neoplasias Colorretais , Histona-Lisina N-Metiltransferase , Humanos , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Fatores de Transcrição/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Histona Desmetilases/metabolismo , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF/metabolismo
2.
Front Plant Sci ; 15: 1411485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301154

RESUMO

Introduction: Mechanical damage significantly reduces the market value of fruits, making the early detection of such damage a critical aspect of agricultural management. This study focuses on the early detection of mechanical damage in blueberries (variety: Sapphire) through a non-destructive method. Methods: The proposed method integrates hyperspectral image fusion with a multi-strategy improved support vector machine (SVM) model. Initially, spectral features and image features were extracted from the hyperspectral information using the successive projections algorithm (SPA) and Grey Level Co-occurrence Matrix (GLCM), respectively. Different models including SVM, RF (Random Forest), and PLS-DA (Partial Least Squares Discriminant Analysis) were developed based on the extracted features. To refine the SVM model, its hyperparameters were optimized using a multi-strategy improved Beluga Whale Optimization (BWO) algorithm. Results: The SVM model, upon optimization with the multi-strategy improved BWO algorithm, demonstrated superior performance, achieving the highest classification accuracy among the models tested. The optimized SVM model achieved a classification accuracy of 95.00% on the test set. Discussion: The integration of hyperspectral image information through feature fusion proved highly efficient for the early detection of bruising in blueberries. However, the effectiveness of this technology is contingent upon specific conditions in the detection environment, such as light intensity and temperature. The high accuracy of the optimized SVM model underscores its potential utility in post-harvest assessment of blueberries for early detection of bruising. Despite these promising results, further studies are needed to validate the model under varying environmental conditions and to explore its applicability to other fruit varieties.

3.
Int J Oncol ; 62(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36866755

RESUMO

Exosomes are nanoscale extracellular vesicles secreted by parent cells and they are present in most bodily fluids, are able to carry active substances through intercellular transport and mediate communication between different cells, in particular those active in cancer. Circular RNAs (circRNAs) are novel noncoding RNAs expressed in most eukaryotic cells and are involved in various physiological and pathological processes, particularly in the occurrence and progression of cancer. Numerous studies have indicated a close relationship between circRNAs and exosomes. Exosomal circRNAs (exo­circRNAs) are a type of circRNA enriched in exosomes that may participate in the progression of cancer. Based on this, exo­circRNAs may have an important role in malignant behavioral manifestations of cancer and hold great promise in the diagnosis and treatment of cancer. The present review gives an introduction to the origin and functions of exosomes and circRNAs and elaborates on the mechanisms of exo­circRNAs in cancer progression. The biological functions of exo­circRNAs in tumorigenesis, development and drug resistance, as well as their role as predictive biomarkers, were discussed.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , Neoplasias/genética , Carcinogênese , Transformação Celular Neoplásica , Transporte Biológico
4.
Hum Cell ; 34(6): 1866-1877, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34346032

RESUMO

Circular RNAs (circRNAs) have been documented to be aberrantly expressed in many types of malignancies and involved in cancer progression. However, their role in thyroid cancer (TC) remains largely unknown. Our study aimed to explore the role and mechanism of circUBAP2 in TC. The differentially expressed circRNAs in TC tissues were identified using GSE18105 from gene expression omnibus (GEO) database. CircUBAP2 and miR-370-3p expression was analyzed using qRT-PCR. The stability of circUBAP2 was confirmed by actinomycin D and RNase R. The subcellular localization of circUBAP2 was detected using cell fractionation assay. Cell proliferation, apoptosis, and invasion were evaluated using MTT, flow cytometry analysis, and Transwell invasion assay, respectively. The interaction between circUBAP2 and miR-370-3p was predicted using bioinformatics analysis and validated by luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation. CircUBAP2 was upregulated and miR-370-3p was downregulated in TC tissues and cells. CircUBAP2 was highly stable, resistant to RNase R digestion, and predominantly localized in the cytoplasm. CircUBAP2 knockdown inhibited cell proliferation and invasion and triggered apoptosis in TC cells. Bioinformatics analysis showed that circUBAP2 contained putative binding sites of miR-370-3p. CircUBAP2 acted as a sponge to inhibit miR-370-3p expression. Mechanistically, miR-370-3p inhibition abolished the effects of circUBAP2 on proliferation, apoptosis, and invasion in TC cells. Taken together, CircUBAP2 knockdown impeded the proliferation and invasion and induced apoptosis in TC cells via sponging miR-370-3p.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Invasividade Neoplásica/genética , RNA Circular/fisiologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Expressão Gênica , Humanos , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA