Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464521, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992598

RESUMO

Long-term intake of animal-derived foods with excessive fluoroquinolones (FQs) will cause damage to human health, so it is critical to establish a feasible approach for sensitive and rapid monitoring of FQs residues. In this study, a new cyclodextrin modified magnetic metal-organic frameworks (Fe3O4@UiO-66-CD) was successfully synthesized by amidation reaction and applied to magnetic solid phase extraction (MSPE) for FQs analysis. The adsorption behavior of Fe3O4@UiO-66-CD was consistent with the pseudo-second-order kinetics and Freundlich isothermal adsorption model, which indicated that the designed material had various interactions on FQs, such as host-guest interaction and π-π interaction. The parameters of MSPE were optimized and the determination method of norfloxacin, enrofloxacin, lomefloxacin and gatifloxacin was established by using MSPE combined with ultra-high performance liquid chromatography (UHPLC) and fluorescence detector (FLD). The method validation results displayed that the detection limits were 0.02-0.09 ng/mL, and the RSDs of intra-day and inter-day precision were less than 4.1 and 6.4 %, respectively. In the target FQs analysis of real honey and milk samples, the recoveries at different fortified concentrations were in the ranges of 88.4 % to 108.6 % with RSD ≤ 5.7 %. The results showed that the proposed method was sensitive, accurate and reliable for the determination of trace FQs in animal-derived foods.


Assuntos
Ciclodextrinas , Mel , Estruturas Metalorgânicas , Animais , Humanos , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Leite/química , Mel/análise , Fluoroquinolonas/análise , Extração em Fase Sólida/métodos , Fenômenos Magnéticos
2.
J Chromatogr A ; 1708: 464364, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708669

RESUMO

In this paper, we designed and manufactured a reliable magnetic solid phase extraction (MSPE) microfluidic chip for determination of polycyclic aromatic hydrocarbons (PAHs) in water combined with gas chromatography-mass spectrometry. Sample loading, washing and elution are implemented with microinjection pump and integrated on a single chip, which reduced manual operation. Magnets were used to fix octadecyl/phenyl bifunctional Fe3O4@SiO2 extractant to avoid the design of weir structure in extraction chamber. The whole microfluidic chip was simple and low cost. Based on the microfluidic chip extraction platform, the on-chip MSPE method for the determination of PAHs was optimized and established. The results showed that this method required only 2 mL of sample, 2 mg of extractant, and 50 µL of elution organic solvent for whole on-chip MSPE process, which was environmentally friendly and consistent with green chemistry. Method verification results were displayed which the linear range of five PAHs was between 1-100 ng/mL with good linearity (R2≥ 0.9985), and the detection limits (S/N = 3) were 0.08-0.26 ng/mL. The RSDs of intra-day precision (n=6) and inter-day precision (n=9) for PAHs were less than 6.1 % and 7.2 %, respectively. Enrichment factors were determined to be 31.3-37.7. The recoveries of river water, tap water, bottle water, waste water and urine at three spiked levels were in the range of 89.9% to 113.7% and the matrix effect values were between 83.8% to 109.6%. The extraction platform has the advantages of accurate analysis, simple design and cost-effective, which is conducive to the widespread use of microfluidic chips.


Assuntos
Microfluídica , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas , Dióxido de Silício , Água , Extração em Fase Sólida , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA