Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Chem Soc Rev ; 53(9): 4400-4433, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497773

RESUMO

The theoretically infinite compositional space of high-entropy alloys (HEAs) and their novel properties and applications have attracted significant attention from a broader research community. The successful synthesis of high-quality single-phase HEA nanoparticles represents a crucial step in fully unlocking the potential of this new class of materials to drive innovations. This review analyzes the various methods reported in the literature to identify their commonalities and dissimilarities, which allows categorizing these methods into five general strategies. Physical minimization of HEA metals into HEA nanoparticles through cryo-milling represents the typical top-down strategy. The counter bottom-up strategy requires the simultaneous generation and precipitation of metal atoms of different elements on growing nanoparticles. Depending on the metal atom generation process, there are four synthesis strategies: vaporization of metals, burst reduction of metal precursors, thermal shock-induced reduction of metal precursors, and solvothermal reduction of metal precursors. Comparisons among the methods within each strategy, along with discussions, provide insights and guidance for achieving the robust synthesis of HEA nanoparticles.

2.
Plant Dis ; 107(10): 3269-3272, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36947840

RESUMO

Sweet cherry virescence phytoplasma strain SCV-TA2020, a related strain of 'Candidatus Phytoplasma ziziphi', is a pathogen associated with sweet cherry virescence disease in China. Here, we provide the first-draft genome sequence of SCV-TA2020, which consists of 775,344 bases, with a GC content of 23.21%. This will provide a reference for understanding the host selection and diversity of host-specific symptoms of 16SrV-B subgroup phytoplasmas.


Assuntos
Phytoplasma , Prunus avium , Phytoplasma/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Filogenia , Doenças das Plantas , China
3.
J Biochem Mol Toxicol ; 35(4): e22689, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33347680

RESUMO

The present study examines the chemopreventive role of [6]-gingerol, an active component of ginger, on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis models. The HBP has been developed with an addition of 0.5% of DMBA to the HBP area three times per week, up to the end of the 16th experimental week. At the end of the experiment, we noticed 100% tumor incidence and precancerous lesions, such as dysplasia, hyperplasia, keratosis, and well-differentiated squamous cell carcinoma, in DMBA-induced HBP. Furthermore, we observed that [6]-gingerol inhibited the increased thiobarbituric acid-reactive substances and decreased antioxidant levels in DMBA-induced hamsters. Moreover, [6]-gingerol inhibits DMBA-exposed over expression of inflammatory markers (inducible nitric oxide synthase, interleukin [IL]-1ß, IL-6, cyclooxygenase-2, and tumor necrosis factor-α) and cell proliferation markers (cyclin D1, proliferating cell nuclear antigen); induces proapoptotic markers in HBP. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a major antioxidant transcription factor, which regulates the antioxidant gene-dependent scavenge of tumor proliferation and apoptosis. Overexpression of Nrf2 signaling plays a pivotal role and can be a novel target in preventing carcinogenesis. In this study, [6]-gingerol restores the DMBA-induced depletion of Nrf2 signaling and thereby prevents buccal pouch carcinogenesis in hamsters. These results point out that [6]-gingerol impedes the responses of inflammatory and cell proliferation-associated progression of cancer through the action of Nrf2 signaling.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Carcinogênese , Catecóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Álcoois Graxos/farmacologia , Mucosa Bucal/metabolismo , Neoplasias Bucais , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinogênese/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Mesocricetus , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia
4.
Nano Lett ; 20(4): 2806-2811, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32197043

RESUMO

Silver nanostructures with hierarchical porosities of multiple length scales have been synthesized through electrochemical reduction of silver benzenethiolate nanoboxes. The porous Ag nanostructures exhibit superior catalytic performance toward electrochemical reduction of CO2. The Faradaic efficiency of reducing CO2 to CO can be close to 100% at high cathodic potentials, benefiting from the readsorbed benzenethiolate ions on the Ag surface that can suppress the hydrogen evolution reaction (HER). Density functional theory calculations using the SCAN functional reveal that the disfavored H binding on the benzenethiolate-modified Ag surface is responsible for inhibiting the HER. The mass-specific activity of CO2 reduction can be over 500 A/g because the multiple-scale porosities maximize the diffusion of reactive species to and away from the Ag surface. The unique multiscale porosities and surface modification of the as-synthesized Ag nanostructures make them a class of promising catalysts for electrochemical reduction of CO2 in protic electrolytes to achieve maximum activity and selectivity.

5.
J Chem Phys ; 152(8): 084706, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113372

RESUMO

Plasmonic metal nanoparticles (NPs) represent a promising class of photocatalysts to drive chemical transformations by the photoexcited hot electrons in the NPs. In this work, the dependence of photon-to-chemical conversion efficiency on the size of plasmonic silver nanoparticles (Ag NPs) has been comprehensively studied with the use of the photocatalytic degradation of methylene blue as a probe reaction. Comparison of Ag NPs with two different sizes (6 nm and 13 nm in diameter) highlights that the smaller sized Ag NPs favor the photocatalytic activity by positively translating the high efficiency of hot electron generation to the hot-electron-driven chemical reaction on the surface of the Ag NPs. Loading the small Ag NPs to the dielectric silica nanospheres (SiOX NSs, average diameter of 400 nm) with high surface coverage increases the light absorption power in the Ag NPs due to the surface light scattering resonances of the SiOX NSs and interparticle plasmon coupling of the adjacent Ag NPs. The enhanced light absorption can also be rendered to the improved photocatalytic activity. This design principle of plasmonic photocatalysts provides a promise of utilizing solar energy to drive desirable chemical reactions with high photon-to-chemical conversion efficiency.

6.
Angew Chem Int Ed Engl ; 58(27): 8987-8995, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830994

RESUMO

Rational synthesis of colloidal nanoparticles with desirable properties relies on precise control over the nucleation and growth kinetics, which is still not well understood. The recent development of in situ high energy synchrotron X-ray techniques offers an excellent opportunity to quantitatively monitor the growth trajectories of colloidal nanoparticles in real time under real reaction conditions. The time-resolved, quantitative data of the growing colloidal nanoparticles are unique to reveal the mechanism of nanoparticle formation and determine the corresponding intrinsic kinetic parameters. This review discusses the kinetics of major steps of forming colloidal nanoparticles and the capability of in situ synchrotron X-ray techniques in studying the corresponding kinetics.

7.
Acc Chem Res ; 50(7): 1754-1761, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28654267

RESUMO

Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared communications. This solid state process is not feasible for synthesizing TSHA nanoparticles since it is hard to form two different types of AgX nanoparticles in direct contact. In contrast, coprecipitation of silver ions with different halide ions via colloidal chemistry represents the most promising strategy to synthesize TSHA nanoparticles. Forming uniform and phase-pure ternary silver halide nanocrystals requires that the rate ratio for precipitating both halide ions remains constant throughout the synthesis. However, the significant difference in solubility among different AgX usually leads to a nonuniform compositional distribution in the resulting nanoparticles because the halide ions corresponding to the less soluble AgX precipitate faster at the early reaction stage. This Account summarizes the methods recently developed for the successful synthesis of phase-pure TSHA nanoparticles with uniform sizes and morphologies, which involve precise control over the balanced diffusion of different halide ions to react with silver ions. Typical methods include the use of microemulsion capsules and high-viscosity solvents to lower and even the diffusion coefficients of various halide ions, thus maintaining the precipitation rates of both AgX in single nanoparticles at a constant ratio. The availability of high-quality TSHA nanoparticles provides promising opportunities to explore their new properties and applications.

8.
Nano Lett ; 17(3): 1963-1969, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28186766

RESUMO

By selectively promoting heterogeneous nucleation/growth of MoS2 on graphene monolayer sheets, edge-oriented (EO) MoS2 nanosheets with expanded interlayer spacing (∼9.4 Å) supported on reduced graphene oxide (rGO) sheets were successfully synthesized through colloidal chemistry, showing the promise in low-cost and large-scale production. The number and edge length of MoS2 nanosheets per area of graphene sheets were tuned by controlling the reaction time in the microwave-assisted solvothermal reduction of ammonium tetrathiomolybdate [(NH4)2MoS4] in dimethylformamide. The edge-oriented and interlayer-expanded (EO&IE) MoS2/rGO exhibited significantly improved catalytic activity toward hydrogen evolution reaction (HER) in terms of larger current density, lower Tafel slope, and lower charge transfer resistance compared to the corresponding interlayer-expanded MoS2 sheets without edge-oriented geometry, highlighting the importance of synergistic effect between edge-oriented geometry and interlayer expansion on determining HER activity of MoS2 nanosheets. Quantitative analysis clearly shows the linear dependence of current density on the edge length of MoS2 nanosheets.

9.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151576

RESUMO

Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion.

10.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044969

RESUMO

Promising semiconductor-based photocatalysis toward achieving efficient solar-to-chemical energy conversion is an ideal strategy in response to the growing worldwide energy crisis, which however is often practically limited by the insufficient photoinduced charge-carrier separation. Here, a rational cascade engineering of Au nanoparticles (NPs) decorated 2D/2D Bi2 WO6 -TiO2 (B-T) binanosheets to foster the photocatalytic efficiency through the manipulated flow of multichannel-enhanced charge-carrier separation and transfer is reported. Mechanistic characterizations and control experiments, in combination with comparative studies over plasmonic Au/Ag NPs and nonplasmonic Pt NPs decorated 2D/2D B-T composites, together demonstrate the cooperative synergy effect of multiple charge-carrier transfer channels in such binanosheets-based ternary composites, including Z-scheme charge transfer, "electron sink," and surface plasmon resonance effect, which integratively leads to the boosted photocatalytic performance.

11.
Nano Lett ; 16(10): 6555-6559, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27680948

RESUMO

We report the in situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission X-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative X-ray absorption analysis reveals the difference between the longitudinal and radial diffusions. The diffusion coefficient of silver in its oxide nanoshell is, for the first time, calculated to be 1.2 × 10-13 cm2/s from the geometrical parameters extracted from the TXM images.

12.
Nano Lett ; 16(1): 715-20, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26625184

RESUMO

The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

13.
Nano Lett ; 16(4): 2812-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999499

RESUMO

Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru core-frame octahedra could be easily converted to Ru octahedral nanoframes of ∼2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.

14.
Chem Soc Rev ; 44(15): 5053-75, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25856797

RESUMO

The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

15.
Nano Lett ; 15(11): 7644-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26484941

RESUMO

Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

16.
Angew Chem Int Ed Engl ; 55(16): 4952-6, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26992123

RESUMO

Developing new synthetic methods for carbon supported catalysts with improved performance is of fundamental importance in advancing proton exchange membrane fuel cell (PEMFC) technology. Continuous-flow, microfluidic reactions in capillary tube reactors are described, which are capable of synthesizing surfactant-free, ultrafine PtSn alloyed nanoparticles (NPs) on various carbon supports (for example, commercial carbon black particles, carbon nanotubes, and graphene sheets). The PtSn NPs are highly crystalline with sizes smaller than 2 nm, and they are highly dispersed on the carbon supports with high loadings up to 33 wt%. These characteristics make the as-synthesized carbon-supported PtSn NPs more efficient than state of the art commercial Pt/C catalysts applied to the ethanol oxidation reaction (EOR). Significantly enhanced mass catalytic activity (two-times that of Pt/C) and improved stability are obtained.

17.
Small ; 11(3): 300-5, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25179122

RESUMO

Squeezing out crystalline stacking faults: Birnessite-type δ-phase MnO2 microflowers containing interconnected ultrathin nanosheets are synthesized through a microwave-assisted hydrothermal process and exhibit a layered crystalline structure with significant stacking faults. Compressing these MnO2 nanosheets in a diamond anvil cell with high pressure up to tens of GPa effectively eliminates the crystalline stacking faults.

18.
Angew Chem Int Ed Engl ; 54(31): 8948-51, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26094976

RESUMO

Switchable surface redox chemistry is demonstrated in gold@iron/iron oxide core-shell nanoparticles with ambient oxidation and plasmon-mediated reduction to modulate the oxidation state of shell layers. The iron shell can be oxidized to iron oxide through ambient oxidation, leading to an enhancement and red-shift of the gold surface plasmon resonance (SPR). This enhanced gold SPR can drive reduction of the iron oxide shell under broadband illumination to reversibly blue-shift and significantly dampen gold SPR absorption. The observed phenomena provide a unique mechanism for controlling the plasmonic properties and surface chemistry of small metal nanoparticles.

19.
Chem Soc Rev ; 42(7): 2497-511, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23072940

RESUMO

Controlled synthesis of colloidal nanoparticles in organic solutions is among the most intensely studied topics in nanoscience because of the intrinsic advantages in terms of high yield and high uniformity in comparison with aqueous synthesis. However, systematic studies on the formation mechanism of nanoparticles with precisely tailored physical parameters are barely reported. In this tutorial review, we take the synthesis of different Ag nanoparticles as an example to rule out the general principles for controlling the nucleation process involved in the formation of colloidal Ag nanoparticles in organic solutions, which enables the synthesis of high-quality nanoparticles.

20.
Nano Lett ; 13(8): 3958-64, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879377

RESUMO

Synthesis of nanoparticle dimers made of asymmetric compositions is very challenging because of the difficulty in manipulating the nanoparticles' surface chemistries in order to control the assembly and/or growth of different nanoparticles. In this Letter, we report a seed-mediated, surface-confined epitaxial overgrowth strategy that enables the synthesis of high-quality interfaced Au-Ag heterodimers in the quantum size regime (diameters <10 nm). Au and Ag share a common face-centered cubic lattice and have nearly identical lattice constants, which facilitates epitaxial overgrowth and allows direct contact between the Au and Ag domains. Quantum size effects, formation of the Au/Ag interfaces, and chemical interactions with surfactant molecules strongly influence the optical properties of the dimers and lead to the observation of unique surface plasmon resonances. In particular, we find an unusual enhancement of the characteristic Au surface plasmon resonance and the emergence of a charge transfer plasmon across the Au/Ag domains, which together lead to broad-band absorption spanning visible to near-infrared wavelengths. A model that captures the changes in optical behavior due to chemical interactions and quantum size effects is used to calculate the absorption spectra of the interfaced heterodimers, resulting in good agreement with experimental measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA