Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(43): 13769-13774, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39340463

RESUMO

Low-dimensional Ga2O3 demonstrates a unique ultraviolet photoresponse and could be used in various electronic and optical systems. However, the low-dimensional Ga2O3 photodetector is faced with the challenges of a complex preparation process and poor device performance. In this work, ultrathin Ga2O3 layers with ∼7 nm thickness are prepared on quartz rods by UV exposure to liquid gallium. Benefiting from low-density oxygen vacancy defects cured by UV exposure, the low-dimensional Ga2O3 photodetector exhibits a high response speed (rise: 64.7 µs; fall: 51.4 µs) and an exceptional linear dynamic range of 120 dB. Furthermore, the photodetector array based on these ultrathin Ga2O3 shows an effective trajectory tracking capability by monitoring UV source motion. This work develops a simple preparation method to construct a low-dimensional UV photodetector array with fast response and useful trajectory tracking capability, exhibiting the significance of ultrathin Ga2O3 in UV optoelectronics.

2.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991705

RESUMO

Unmanned aerial vehicles (UAVs) have been widely considered to enhance the communication coverage, as well as the wireless power transfer (WPT) of energy-constrained communication networks to prolong their lifetime. However, the trajectory design of a UAV in such a system remains a key problem, especially considering the three-dimensional (3D) feature of the UAV. To address this issue, a UAV-assisted dual-user WPT system was investigated in this paper, where a UAV-mounted energy transmitter (ET) flies in the air to broadcast wireless energy to charge the energy receivers (ERs) on the ground. By optimizing the UAV's 3D trajectory toward a balanced tradeoff between energy consumption and WPT performance, the energy harvested by all ERs during a given mission period was maximized. The above goal was achieved through the following detailed designs. On the one hand, on the basis of previous research results, there is a one-to-one correspondence between the UAV's abscissa and height, so only the relationship between the height and time was focused on in this work to obtain the UAV's optimal 3D trajectory. On the other hand, the idea of calculus was employed to calculate the total harvested energy, leading to the proposed high-efficiency trajectory design. Finally, the simulation results demonstrated that this contribution is capable of enhancing the energy supply by carefully designing the 3D trajectory of the UAV, compared to its conventional counterpart. In general, the above-mentioned contribution could be a promising way for UAV-aided WPT in the future Internet of Things (IoT) and wireless sensor networks (WSNs).

3.
Sensors (Basel) ; 22(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36146206

RESUMO

In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted wireless power transfer (WPT) system, in which a set of UAV-mounted mobile energy transmitters (ETs) are dispatched to broadcast wireless energy to an energy receiver (ER) on the ground. In particular, we aim to maximize the amount of energy transferred to the ER during a finite UAV's flight period, subject to the UAV's maximum speed and collision avoidance constraints. First, the basic one/two-UAV scenarios are researched in detail, which show that UAVs should hover at fixed locations during the whole charging period. Specifically, the Lagrange multiplier method is employed to solve the proposed optimization problem for the case of two UAV situation. Specifically, the general conclusions based on the theoretical analysis of one/two-UAV scenarios are drawn contribute to deducing the trajectory design of UAVs when the number of UAVs increases from three to seven. The obtained trajectory solution implies that UAVs should be evenly distributed on the circumference with point (0,0,H) as the center and UAVs' safe distance as the radius. Finally, numerical results are provided to validate the trajectory design algorithm for the multiple UAVs-enabled single-user WPT system.

4.
ACS Appl Mater Interfaces ; 12(44): 49723-49736, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33094995

RESUMO

The usually inconvenient detection and uneasy recycling of polydopamine (PDA) with sphere morphology as an adsorbent restrict its actual applications in wastewater purification. Thus, novel composite fibers were fabricated via the electrospinning technique by integrating polydopamine microspheres (PDA-MPs) with pH/temperature dual-responsive copolymers. The insoluble fraction of the fabricated composite fibers can be maintained to a value above 89% after being immersed in aqueous solutions with different pH values. Also, the regeneration efficiency of the composite fibers can also remain above 80% after undergoing five adsorption-desorption cycles. These results both indicated that the fabricated composite fibers can avoid secondary pollution during the adsorption process effectively. In addition, the presence of abundant N-isopropyl acrylamide (NIPAM) units within the fibers could make it have a relatively higher water swelling ability of 4643%, which could further offer relatively larger inner spaces to accommodate the dye molecules. Meanwhile, by incorporating ß-cyclodextrin (ß-CD), methacrylic acid (MAA), PDA, and NIPAM components, plentiful active adsorption sites could be supplied to interact with methylene blue (MB) dye. So, the adsorption experiments of the composite fibers showed a maximum adsorption capacity of 1722.1 mg/g at pH 9.0 and a temperature of 55 °C. Furthermore, the pseudo-second-order kinetic model of adsorption suggested that it is a chemisorption process. Moreover, the adsorption experimental data can be better described by Langmuir models, inferring its monolayer adsorption. The adsorption thermodynamic studies revealed that adsorption is a spontaneous and endothermic process. Also, the increase of temperature facilitated the adsorption processes, owing to the increase of adsorbent's hydrophobicity and molecules' reactivity. The present work suggested that the combination of smart-responsive polymers and PDA-MPs could form an unprecedented system to be a promising candidate adsorbent for wastewater treatment.

5.
Carbohydr Polym ; 208: 486-494, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658827

RESUMO

Novel ß-cyclodextrin modified fibers with highly insoluble infraction and temperature enhanced adsorption performance were fabricated via electrospinning technology and followed thermo-crosslinking. The fabricated fibers were characterized by FT-IR, 1H NMR, TGA and SEM. In the fibers, ß-CD was crosslinked with methacrylic acid (MAA) units to maintain morphologies of fibers and further be utilized for the adsorption of Crystal Violet through complex and electrostatic interaction. In particular, N-isopropyl acrylamide (NIPAM) units were introduced to create thermo-responsively hydrophobic internal cavity within the swelling fibers at high temperatures. Benefiting from that, the maximum adsorption amount could reach to 1253.78 mg g-1, enhanced by 20% than that at low temperatures. The adsorption data of the fibers fit well the pseudo-second-order model and Langmuir isotherm model. Moreover, the fibers could maintain high regeneration efficiency even after four adsorption-desorption cycles. These results indicated the practical application values of the ß-cyclodextrin modified fibers in the dye wastewater treatment field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA