Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Gen Virol ; 101(8): 840-852, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553066

RESUMO

The genetic diversity of enterovirus G (EV-G) was investigated in the wild-boar population in Japan. EV-G-specific reverse transcription PCR demonstrated 30 (37.5 %) positives out of 80 faecal samples. Of these, viral protein 1 (VP1) fragments of 20 samples were classified into G1 (3 samples), G4 (1 sample), G6 (2 samples), G8 (4 samples), G11 (1 sample), G12 (7 samples), G14 (1 sample) and G17 (1 sample), among which 11 samples had a papain-like cysteine protease (PL-CP) sequence, believed to be the first discoveries in G1 (2 samples) or G17 (1 sample) wild-boar EV-Gs, and in G8 (2 samples) or G12 (6 samples) EV-Gs from any animals. Sequences of the non-structural protein regions were similar among EV-Gs possessing the PL-CP sequence (PL-CP EV-Gs) regardless of genotype or origin, suggesting the existence of a common ancestor for these strains. Interestingly, for the two G8 and two G12 samples, the genome sequences contained two versions, with or without the PL-CP sequence, together with the homologous 2C/PL-CP and PL-CP/3A junction sequences, which may explain how the recombination and deletion of the PL-CP sequences occured in the PL-CP EV-G genomes. These findings shed light on the genetic plasticity and evolution of EV-G.


Assuntos
Proteínas do Capsídeo/genética , Cisteína Proteases/genética , Infecções por Enterovirus/virologia , Fezes/virologia , Papaína/genética , Sus scrofa/virologia , Animais , Enterovirus Suínos , Variação Genética/genética , Genoma Viral/genética , Genótipo , Japão , Filogenia , Recombinação Genética/genética , Suínos , Doenças dos Suínos/virologia
2.
Arch Virol ; 165(12): 2909-2914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32951133

RESUMO

Two and three genotypes of enterovirus G (EV-G) carrying a papain-like cysteine protease (PL-CP) sequence were detected on two pig farms and classified into genotypes G1 and G10, and G1, G8, and G17, respectively, based on VP1 sequences. A G10 EV-G virus bearing a PL-CP sequence was detected for the first time. Phylogenetic analysis of the P2 and P3 regions grouped the viruses by farm with high sequence similarity. Furthermore, clear recombination break points were detected in the 2A region, suggesting that PL-CP EV-G-containing strains gained sequence diversity through recombination events among the multiple circulating EV-G genotypes on the farms.


Assuntos
Cisteína Proteases/genética , Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Genoma Viral , Recombinação Genética , Animais , Proteínas do Capsídeo/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus Suínos/enzimologia , Fezes/virologia , Variação Genética , Genótipo , Japão , Filogenia , Análise de Sequência de DNA , Sus scrofa , Proteínas Virais/genética
3.
Arch Virol ; 165(2): 471-477, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863265

RESUMO

We sequenced the complete genome of a porcine torovirus (PToV) strain from Japan for the first time. Whole-genome analysis revealed that this strain (Iba/2018) has a mosaic sequence composed of at least three genome backgrounds, related to US, Chinese and German PToV strains. Clear recombination breakpoints were detected in the M and HE coding regions. A similarity plot and structural analysis demonstrated that the HE coding region exhibits the highest diversity, and the most sequence variation was found in the lectin domain. PToVs were divided into two lineages in the HE region, whereas clear lineages were not found in other regions.


Assuntos
Fezes/virologia , Genoma Viral , Infecções por Torovirus/veterinária , Torovirus/genética , Torovirus/isolamento & purificação , Sequenciamento Completo do Genoma , Animais , Biologia Computacional , Evolução Molecular , Humanos , Japão , Recombinação Genética , Suínos , Infecções por Torovirus/virologia
4.
Arch Virol ; 164(8): 2147-2151, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111261

RESUMO

Posaviruses and posa-like viruses are unclassified viruses with sequence similarity to viruses of the order Picornavirales. They have been reported in various vertebrates and invertebrates. We identified 11 posavirus-like sequences in porcine feces and performed phylogenic analysis. Previously reported Japanese posaviruses and those identified in this study clustered with posavirus 1, 4, and 7 and husavirus 1, while five viruses branched into three independent lineages, tentatively named posavirus 10, 11, and 12. Interestingly, posaviruses, except for posavirus 8 and 9, husaviruses, and rasaviruses, formed a cluster consisting of viruses only from pigs, humans, and rats, while posavirus 8 and 9, fisavirus, and basaviruses clustered with posa-like viruses from invertebrates.


Assuntos
Fezes/virologia , Invertebrados/virologia , Vertebrados/virologia , Vírus/classificação , Vírus/genética , Animais , Análise por Conglomerados , Genoma Viral/genética , Humanos , Japão , Metagenômica/métodos , Filogenia , Vírus de RNA/genética , Ratos , Análise de Sequência de DNA/métodos , Suínos
5.
Virus Genes ; 55(2): 198-208, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30712153

RESUMO

The Porcine Sapelovirus (PSV) is an enteric virus of pigs that can cause various disorders. However, there are few reports that describe the molecular characteristics of the PSV genome. In this study, almost the entire genomes of 23 PSVs detected in Japanese pigs were analyzed using bioinformatics. Analysis of the cis-active RNA elements showed that the predicted secondary structures of the internal ribosome entry site in the 5' untranslated region (UTR) and a cis-replication element in the 2C coding region were conserved among PSVs. In contrast, those at the 3' UTR were different for different PSVs; however, tertiary structures between domains were conserved across all PSVs. Phylogenetic analysis of nucleotide sequences of the complete VP1 region showed that PSVs exhibited sequence diversity; however, they could not be grouped into genotypes due to the low bootstrap support of clusters. The insertion and/or deletion patterns in the C-terminal VP1 region were not related to the topology of the VP1 tree. The 3CD phylogenetic tree was topologically different from the VP1 tree, and PSVs from the same country were clustered independently. Recombination analysis revealed that recombination events were found upstream of the P2 region and some recombination breakpoints involved insertions and/or deletions in the C-terminal VP1 region. These findings demonstrate that PSVs show genetic diversity and frequent recombination events, particularly in the region upstream of the P2 region; however, PSVs could currently not be classified into genotypes and conserved genetic structural features of the cis-active RNA elements are observed across all PSVs.


Assuntos
Diarreia/genética , Genoma Viral/genética , Infecções por Picornaviridae/virologia , Picornaviridae/genética , Animais , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Variação Genética , Filogenia , Picornaviridae/patogenicidade , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/veterinária , Suínos/genética , Suínos/virologia , Doenças dos Suínos/genética , Doenças dos Suínos/virologia
6.
Nucleic Acids Res ; 43(Database issue): D631-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414358

RESUMO

The previous release of our Full-parasites database (http://fullmal.hgc.jp/) brought enhanced functionality, an expanded full-length cDNA content, and new RNA-Seq datasets from several important apicomplexan parasites. The 2015 update witnesses the major shift in the databases content with focus on diverse transcriptomes of the apicomplexan parasites. The content of the database was substantially enriched with transcriptome information for new apicomplexan parasites. The latest version covers a total of 17 species, with addition of our newly generated RNA-Seq data of a total of 909,150,388 tags. Moreover, we have generated and included two novel and unique datasets, which represent diverse nature of transcriptomes in individual parasites in vivo and in vitro. One is the data collected from 116 Indonesian patients infected with Plasmodium falciparum. The other is a series of transcriptome data collected from a total of 38 single cells of P. falciparum cultured in vitro. We believe that with the recent advances our database becomes an even better resource and a unique platform in the analysis of apicomplexan parasites and their interaction with their hosts. To adequately reflect the recent modifications and the current content we have changed the database name to DB-AT--DataBase of Apicomplexa Transcriptomes.


Assuntos
Apicomplexa/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Internet , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Análise de Sequência de RNA
7.
Parasitol Res ; 113(5): 1681-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24535736

RESUMO

The aim of this study is to determine the efficacy of exoantigens derived from Babesia gibsoni cultures to induce protective immunity against challenge exposure of virulent organisms. An attenuated B. gibsoni Oita strain was maintained in vitro by the microaerophilus stationary phase (MASP) method, and exoantigens-containing supernatant fluids were collected for preparation of the immunization. Two dogs received three subcutaneous immunizations with a 20-day interval of B. gibsoni exoantigens plus 0.5 mg saponin (Quil A). On day 68 after the prime immunization, the immunized dogs and control dogs were challenged intravenously with 2 × 10(8) virulent parasites of a homologous B. gibsoni strain. The results showed that exoantigens could induce a high degree of protection against virulent homologous challenge exposure. Two dogs immunized with exoantigens showed a lower parasitemia, accompanied by a slight decrease in the PCV that returned to normal values. Control dogs developed typical acute clinical signs, including severe anemia and hyperthermia. The immunization elicited humoral immune responses. In dogs immunized with exoantigens, the maximum antibody titer was 2,560 and 5,120 by indirect fluorescent antibody test (IFAT), respectively. Preliminary Western blot analysis of the immunogen revealed five dominant proteins of molecular weights of 18, 37, 43, 50, and 57 kDa. These results suggested that the culture-derived exoantigens were candidates for non-viable vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Babesia/patogenicidade , Babesiose/veterinária , Doenças do Cão/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Babesia/imunologia , Babesiose/imunologia , Babesiose/prevenção & controle , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães , Feminino , Imunidade Humoral , Parasitemia/prevenção & controle
8.
Parasitol Res ; 113(9): 3449-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997621

RESUMO

Heterakis spumosa is a nematode of invasive rodents, mainly affiliated with Rattus spp. of Asian origin. Despite the ecological importance and cosmopolitan distribution, little information is available on the genetic characteristics and infectivity to experimental animals of this roundworm. Heterakis isolates obtained from naturally infected brown rats caught in 2007 in the city of Sagamihara, east central Honshu, Japan, and maintained by laboratory passages were subjected to mitochondrial sequence analysis and experimental infection in mice. Sequencing of the cox1 gene revealed that nucleotides of H. spumosa and previously examined Heterakis isolonche isolates from gallinaceous birds in Japan differed by 11.2-12.2% that conforms to the range expected for interspecific differences. The two H. spumosa isolates differed by a single 138T/C non-synonymous substitution in the 393-bp mt sequence. In a dendrogram, the H. spumosa samples formed a subcluster with members of the nematode superfamily Heterakoidea, H. isolonche and Ascaridia galli. In an experimental infection study, ICR, AKR, B10.BR and C57BL/6 mice strains were inoculated with 200 H. spumosa eggs/head and necropsied at 14 and 90 days post-inoculation (DPI) when the number of worms was recorded. Eggs were initially detected in faeces from 32-35 DPI in ICR, AKR and B10.BR mice and the highest mean number of eggs per gram of faeces (EPG) was 4,800 at 38 DPI, 2,200 at 58 DPI and 800 at 44 and 72 DPI in ICR, AKR and B10.BR mice, respectively. No eggs were observed in faeces of the C57BL/6 mouse strain during the experiment. A similar number of juvenile worms were isolated from all mouse strains at 14 DPI, whereas no adult worms were detected in C57BL/6 mice at 90 DPI.


Assuntos
Nematoides/classificação , Infecções por Nematoides/veterinária , Animais , Sequência de Bases , DNA de Helmintos/genética , Fezes/parasitologia , Feminino , Japão , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Nematoides/genética , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Filogenia , Ratos , Especificidade da Espécie
9.
Transbound Emerg Dis ; 69(4): 1761-1769, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33978312

RESUMO

Atypical porcine pestivirus (APPV), which has been confirmed to be associated with congenital tremor (CT) in pigs, is a newly discovered porcine virus that has been found in the Americas, Europe and Asia; however, no report of APPV in Japan has been published. We identified an APPV in the central nervous system of Japanese piglets with CT and firstly determined and analysed the complete genome sequence. Phylogenetic analysis using the complete genome nucleotide sequence of the Japanese APPV, named Anna/2020, and those of APPVs from the NCBI database showed that APPVs were divided into three genotypes (genotypes 1 to 3), and that Anna/2020 clustered with the genotype 3 APPV strains, but distantly branched from these strains. Pairwise complete coding region nucleotide sequence comparisons revealed that there was 94.0%- 99.7% sequence identity among the genotype 3 strains, while Anna/2020 showed 87.0%-89.3% identity to those genotype 3 strains, suggesting that Anna/2020 represents a novel APPV lineage within genotype 3. Retrospective examinations using RT-PCR revealed one genotype 1 and two novel genotype 3 APPVs from pigs without CT, and that novel genotype 3 APPVs have been prevalent in Japan since at least 2007.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Japão/epidemiologia , Pestivirus/genética , Infecções por Pestivirus/congênito , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Filogenia , Estudos Retrospectivos , Suínos , Tremor/congênito , Tremor/epidemiologia , Tremor/veterinária
10.
J Vet Med Sci ; 82(2): 217-223, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31866601

RESUMO

The etiology of Porcine respiratory disease complex is complicated by infections with multiple pathogens, and multiple infections increase the difficulty in identifying the causal pathogen. In this present study, we developed a detection system of microbes from porcine respiratory by using TaqMan real-time PCR (referred to as Dempo-PCR) to screen a broad range of pathogens associated with porcine respiratory diseases in a single run. We selected 17 porcine respiratory pathogens (Actinobacillus pleuropneumoniae, Boldetella bronchiseptica, Haemophilus parasuis, Pasteurella multocida, Pasteurella multocida toxin, Streptococcus suis, Mycoplasma hyopneumoniae, Mycoplasma hyorhinis, Mycoplasma hyosynovie, porcine circovirus 2, pseudorabies virus, porcine cytomegalovirus, swine influenza A virus, porcine reproductive and respiratory virus US strain, EU strain, porcine respiratory coronavirus and porcine hemagglutinating encephalomyelitis virus) as detection targets and designed novel specific primer-probe sets for seven of them. In sensitivity test by using standard curves from synthesized DNA, all primer-probe sets showed high sensitivity. However, porcine reproductive and respiratory virus is known to have a high frequency of genetic mutations, and the primer and probe sequences will need to be checked at a considerable frequency when performing Dempo-PCR from field samples. A total of 30 lung samples from swine showing respiratory symptoms on six farms were tested by the Dempo-PCR to validate the assay's clinical performance. As the results, 12 pathogens (5 virus and 7 bacteria) were detected and porcine reproductive and respiratory virus US strain, Mycoplasma hyorhinis, Haemophilus parasuis, and porcine cytomegalovirus were detected at high frequency. These results suggest that Dempo-PCR assay can be applied as a screening system with wide detection targets.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças Respiratórias/veterinária , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia , Animais , Japão/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças Respiratórias/microbiologia , Doenças Respiratórias/virologia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/virologia
11.
Parasitol Int ; 58(1): 55-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19000776

RESUMO

A novel gene, BgP12, encoding a 12-kDa protein was identified from Babesia gibsoni. The full-length cDNA of BgP12 contains an open reading frame of 378 bp, corresponding to 126 amino acid (aa) residues consisting of a putative 26 aa signal peptide and a 100 aa mature protein. The recombinant BgP12 (rBgP12) lacking the N-terminal signal peptide was expressed in Escherichia coli as a soluble glutathione S-transferase (GST) fusion protein (rBgP12) that produced an anti-rBgP12 serum in mice after immunization. Using this anti-rBgP12 serum, a native 12-kDa protein in B. gibsoni was recognized by Western blot analysis. Immunofluorescent antibody tests (IFAT) revealed that BgP12 was mainly seen during the ring stage of B. gibsoni trophozoite. An indirect enzyme-linked immunosorbent assay (ELISA) using the rBgP12 detected specific antibodies in the sequential sera of a dog experimentally infected with B. gibsoni beginning 10 days post-infection to 442 days post-infection, even when the dog became chronically infected and showed a low level of parasitemia. Moreover, the antigen did not show cross-reaction with antibodies to the closely related apicomplexan parasites, indicating that the rBgP12 might be an immunodominant antigen for B. gibsoni infection that could be used as a diagnostic antigen for B. gibsoni infection with high specificity and sensitivity.


Assuntos
Antígenos de Protozoários , Babesia/imunologia , Babesiose/veterinária , Doenças do Cão/diagnóstico , Proteínas de Protozoários , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Babesia/classificação , Babesia/crescimento & desenvolvimento , Babesiose/diagnóstico , Babesiose/imunologia , Babesiose/parasitologia , Sequência de Bases , Clonagem Molecular , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães , Ensaio de Imunoadsorção Enzimática , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA , Testes Sorológicos
12.
Infect Genet Evol ; 75: 103959, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299324

RESUMO

Sapoviruses (SaVs) are enteric viruses belonging to the family Caliciviridae that infect humans and animals, including pigs. To date, SaVs have been classified into 19 genogroups (G) based on complete VP1 sequences; however, complete genome sequences of some SaV Gs are not yet available. In this study, we determined the full genome sequences of four SaVs (two GX and two GXI SaVs) and analyzed them together with those of other SaVs. The complete genome sequences of GX and GXI SaVs, excluding the poly(A) tails, were 7124, 7142, 7170, and 7179 nucleotides, which were shorter than those of other SaVs, except for porcine GVI and GVII viruses. Genetic characterization revealed that GX SaVs and GXI SaVs shared common features with GVI and GVII viruses, such as the first 10 amino acid residues in the ORF1 coding region, a shorter ORF1 than that of the other genogroups, and the predicted secondary structure of the 5' end of the genome and the starting region of non-structural protein/structural protein junction. Phylogenetic analyses showed that GX and GXI SaVs branched with porcine GVI, GVII, and GIX SaVs and formed a clade consisting of only porcine SaVs. These findings suggest that porcine GX and GXI SaVs together with porcine GVI, GVII, and possibly GIX SaVs, evolved from a common ancestor in the porcine population.


Assuntos
Sapovirus/genética , Suínos/virologia , Animais , Sequência de Bases , Fezes/virologia , Genoma Viral , Genótipo , Conformação de Ácido Nucleico , Filogenia , RNA Viral/genética , Sapovirus/classificação
13.
Virus Res ; 271: 197680, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31398366

RESUMO

Sapoviruses (SaVs) are enteric viruses that have been detected in human and animals previously; however, SaVs have not been identified in wild boar yet. Using a metagenomics approach, we identified SaVs in fecal samples of free-living wild boars in Japan for the first time. Six of the 48 specimens identified belonged to one genogroup (G)III, one GV and four GVI SaV sequence reads. We successfully determined complete genome of GV and GVI SaV strains using the long reverse transcription PCR strategy and the 5' rapid amplification of cDNA end method. Phylogenetic tree analysis and pairwise distance calculation revealed that GV SaV detected from wild boar was related to recently assigned GV.5 strains from pig, while GVI SaV was assigned to a new genotype within GVI. Moreover, wild boar may act as a reservoir for transmission of SaVs to the pig population (and vice versa) because GIII, GV, and GVI SaVs were all detected in pigs previously.


Assuntos
Genoma Viral , Genótipo , Sapovirus/classificação , Exantema Vesicular de Suínos/virologia , Animais , Genômica/métodos , Japão , Filogenia , Suínos
14.
Antimicrob Agents Chemother ; 52(11): 4072-80, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18794380

RESUMO

Dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a well-validated antifolate drug target in certain pathogenic apicomplexans, but not in the genus Babesia, including Babesia gibsoni. Therefore, we isolated, cloned, and expressed the wild-type B. gibsoni dhfr-ts gene in Escherichia coli and evaluated the inhibitory effect of antifolates on its enzyme activity, as well as on in vitro parasite growth. The full-length gene consists of a 1,548-bp open reading frame encoding a 58.8-kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. Each domain contained active-site amino acid residues responsible for the enzymatic activity. The expressed soluble recombinant DHFR-TS protein was approximately 57 kDa after glutathione S-transferase (GST) cleavage, similar to an approximately 58-kDa native enzyme identified from the parasite merozoite. The non-GST fusion recombinant DHFR enzyme revealed K(m) values of 4.70 +/- 0.059 (mean +/- standard error of the mean) and 9.75 +/- 1.64 microM for dihydrofolic acid (DHF) and NADPH, respectively. Methotrexate was a more-potent inhibitor of the enzymatic activity (50% inhibition concentration [IC(50)] = 68.6 +/- 5.20 nM) than pyrimethamine (IC(50) = 55.0 +/- 2.08 microM) and trimethoprim (IC(50) = 50 +/- 12.5 microM). Moreover, the antifolates' inhibitory effects on DHFR enzyme activity paralleled their inhibition of the parasite growth in vitro, indicating that the B. gibsoni DHFR could be a model for studying antifolate compounds as potential drug candidates. Therefore, the B. gibsoni DHFR-TS is a molecular antifolate drug target.


Assuntos
Babesia/enzimologia , Babesia/genética , Tetra-Hidrofolato Desidrogenase/genética , Timidilato Sintase/genética , Sequência de Aminoácidos , Animais , Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Babesia/crescimento & desenvolvimento , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA de Protozoário/genética , Escherichia coli/genética , Antagonistas do Ácido Fólico/farmacologia , Expressão Gênica , Genes de Protozoários , Dados de Sequência Molecular , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/antagonistas & inibidores
15.
Virus Res ; 257: 68-73, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227146

RESUMO

A novel virus related to the Enterovirus/Sapelovirus supergroup in the family Picornaviridae was identified in healthy porcine feces in Japan by using a metagenomics approach. The genome of the virus, named Sapelo-like porcine picornavirus Japan (SPPVJ) Pig/Isi-Im1/JPN/2016, had a type-IV internal ribosomal entry site and carried a 6978-nucleotide-long single open reading frame encoding a 2326 amino acids (aa) polyprotein precursor. The coding sequence region consisted of leader protein (68 aa), a structural protein region P1 (824 aa), and the non-structural protein regions P2 (672 aa) and P3 (762 aa). Among representative picornaviruses, the P1, 2C, and 3CD regions of SPPVJ had the highest aa identities of 64.4%, 61.9%, and 73.3%, respectively, with the corresponding regions of sapelo-like bat picornavirus BtVs-PicoV/SC2013. Sequencing analysis of the RT-PCR products derived from the 5' untranslated and 3D regions revealed the presence of SPPVJ in 17.8% (19/107) of the feces from healthy and diarrheal pigs in 12 farms in 2015-2016. Further studies are needed to determine the origin and pathogenic potential of SPPJV in pigs and other mammals.


Assuntos
Diarreia/veterinária , Fezes/virologia , Genoma Viral , Infecções por Picornaviridae/veterinária , Picornaviridae/genética , Suínos/virologia , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Diarreia/virologia , Enterovirus , Japão/epidemiologia , Metagenômica , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA , Proteínas Virais/genética
16.
Infect Genet Evol ; 66: 210-216, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316885

RESUMO

Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders, of pigs and wild boars, and are also detected in the feces of healthy pigs. The genus Teschovirus contains a single species Teschovirus A that currently includes 13 serotypes. In the present study, we identified novel PTVs that are distantly related to Teschovirus A and were found in fecal samples of pigs with or without diarrhea in Japan. Phylogenetic analysis of amino acid (aa) sequences of the complete coding region revealed that these newly identified viruses did not cluster with any strains of PTVs or other strains within the picornavirus supergroup 1, suggesting that the viruses may not belong to Teschovirus A or any genus of the family Picornaviridae. These novel PTVs share a type IV internal ribosomal entry site and conserved characteristic motifs in the coding region, yet exhibit 62.2-79.0%, 86.6-92.8%, 77.1-81.0%, and 84.3-86.7% aa identities to PTV strains in P1, 2C, 3C, and 3D regions, respectively. In contrast, PTV 1-13 strains of the Teschovirus A share 76.5-92.1%, 88.1-99.7%, 93.2-100%, and 95.8-100% aa identities in the P1, 2C, 3C, and 3D, respectively, within the species. These data imply that the newly identified viruses belong to teschoviruses, and may represent a novel species in the genus Teschovirus.


Assuntos
Fezes/virologia , Metagenômica , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Teschovirus/genética , Animais , Genoma Viral , Japão/epidemiologia , Metagenômica/métodos , Conformação de Ácido Nucleico , Filogenia , RNA Viral , Suínos , Teschovirus/classificação , Sequenciamento Completo do Genoma
17.
PLoS One ; 13(1): e0190819, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324778

RESUMO

To study the genetic diversity of enterovirus G (EV-G) among Japanese pigs, metagenomics sequencing was performed on fecal samples from pigs with or without diarrhea, collected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were classified into G1 (17 strains), G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two strains), G9 (six strains), G10 (five strains), and a new genotype (one strain). Remarkably, 16 G1 and one G2 strain identified in diarrheic (23.5%; four strains) or normal (76.5%; 13 strains) fecal samples possessed a papain-like cysteine protease (PL-CP) sequence, which was recently found in the USA and Belgium in the EV-G genome, at the 2C-3A junction site. This paper presents the first report of the high prevalence of viruses carrying PL-CP in the EV-G population. Furthermore, possible inter- and intragenotype recombination events were found among EV-G strains, including G1-PL-CP strains. Our findings may advance the understanding of the molecular epidemiology and genetic evolution of EV-Gs.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus Suínos/genética , Variação Genética , Recombinação Genética , Animais , Proteínas do Capsídeo/genética , Cisteína Proteases/genética , Infecções por Enterovirus/epidemiologia , Enterovirus Suínos/enzimologia , Fezes/virologia , Japão , Metagenoma , Filogenia , Prevalência , Sus scrofa
18.
Ticks Tick Borne Dis ; 9(2): 330-333, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29174364

RESUMO

The development of transgenic techniques has been reported in many protozoan parasites over the past few years. We recently established a successful transient transfection system for Babesia gibsoni based on Bg 5'-ef-1α promoter. This study investigated 6 homologous and 6 heterologous promoters for B. gibsoni and B. bovis and identified novel interchangeable cross-species functional promoters between B. gibsoni and B. bovis. Ten out of twelve promoters had heterologous promoter function. In particular, Bg 5'-ef-1α and Bg 5'-actin heterologous promoters resulted in a significantly higher luciferase activity than Bb 5'-ef-1α homologous promoter in B. bovis. The present study showed that Bg 5'-actin promoted the highest luciferase activity in both B. gibsoni and B. bovis. The study further indicates that heterologous promoter function widely exists between B. gibsoni and B. bovis. This finding is an important step for future stable transfection construct design and for the production of vaccines based on transfected B. gibsoni and B. bovis parasites.


Assuntos
Babesia/genética , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas/genética , Transfecção , Actinas/genética , Actinas/metabolismo , Babesia/metabolismo , Babesia bovis/genética , Babesia bovis/metabolismo , Proteínas de Bactérias/metabolismo , Luciferases/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
19.
Mol Biochem Parasitol ; 216: 56-59, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729071

RESUMO

The development of gene manipulation techniques has been reported in many protozoan parasites over the past few years. However, these techniques have not yet been established for Babesia gibsoni. Here, we report for the first time, the successful transient transfection of B. gibsoni. The plasmid containing the firefly luciferase reporter gene (pBS-ELA) was transfected into B. gibsoni by an AMAXA 4D Nucleofector™ device. Transfection using program FA113 and Lonza buffer SF showed the highest luciferase expression. Twenty micrograms of plasmid produced the highest relative transfection efficiency. The fluorescent protein-expressing parasites were determined by GFP-containing plasmid (pBS-EGA) at 48 and 72h post transfection. This finding is the first step towards a stable transfection method for B. gibsoni, which may contribute to a better understanding of the biology of the parasite.


Assuntos
Babesia/genética , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Transfecção , Animais , Babesia/crescimento & desenvolvimento , Babesiose/parasitologia , Cães , Eritrócitos/parasitologia , Expressão Gênica , Genes Reporter , Plasmídeos/genética
20.
Infect Genet Evol ; 55: 209-217, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28923281

RESUMO

Sapoviruses (SaV) are enteric viruses infecting humans and animals. SaVs are highly diverse and are divided into multiple genogroups based on structural protein (VP1) sequences. SaVs detected from pigs belong to eight genogroups (GIII, GV, GVI, GVII, GVIII, GIX, GX, and GXI), but little is known about the SaV genogroup distribution in the Japanese pig population. In the present study, 26 nearly complete genome (>6000 nucleotide: nt) and three partial sequences (2429nt, 4364nt, and 4419nt in length, including the entire VP1 coding region) of SaV were obtained from one diarrheic and 15 non-diarrheic porcine feces in Japan via a metagenomics approach. Phylogenetic analysis of the complete VP1 amino acid sequence (aa) revealed that 29 porcine SaVs were classified into seven genogroups; GIII (11 strains), GV (1 strain), GVI (3 strains), GVII (6 strains), GVIII (1 strain), GX (3 strains), and GXI (4 strains). This manuscript presents the first nearly complete genome sequences of GX and GXI, and demonstrates novel intergenogroup recombination events.


Assuntos
Fezes/virologia , Variação Genética , Recombinação Genética , Sapovirus/classificação , Sapovirus/genética , Doenças dos Suínos/virologia , Animais , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Sapovirus/isolamento & purificação , Suínos , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA