Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Small ; 16(23): e2000655, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363753

RESUMO

Nitric oxide (NO) is a potent tumor-cell radiosensitizer but it can be readily scavenged by hemoglobin (Hb) in vivo. A biomimetic incubator that can generate and deliver NO in a scavenger (Hb)-free environment to enhance its radiosensitizing effect to maximize its efficacy in radiotherapy is proposed. This NO incubator comprises a poly(lactic-co-glycolic acid) (PLGA) hollow microsphere (HM) that contains an NO donor (NONOate) and a surfactant molecule (sodium caprate, SC) in its aqueous core. In acidic tumorous environments, the PLGA shell of the HM allows the penetration of protons from the outside, activating the hydrolytic cleavage of NONOate, spontaneously generating NO bubbles, which are immediately trapped/stabilized by SC. The SC-stabilized NO bubbles in the HM are then squeezed through the spaces of its PLGA matrices by the elevated internal pressure. Upon leaving the HM, the entrapped NO molecules may passively diffuse through their SC-stabilized/protected layer gradually to the tumor site, having a long-lasting radiosensitizing effect and inhibiting tumor growth. The entire process of NO generation and delivery is conducted in a scavenger (Hb)-free environment, mimicking the development of young ovoviviparous fish inside their mothers' bodies in the absence of predators before birth.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Biomimética , Óxido Nítrico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
2.
Angew Chem Int Ed Engl ; 57(31): 9875-9879, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29923670

RESUMO

Inflammation is involved in many human pathologies, including osteoarthritis (OA). Hydrogen (H2 ) is known to have anti-inflammatory effects; however, the bioavailability of directly administered H2 gas is typically poor. Herein, a local delivery system that can provide a high therapeutic concentration of gaseous H2 at inflamed tissues is proposed. The delivery system comprises poly(lactic-co-glycolic acid) microparticles that contain magnesium powder (Mg@PLGA MPs). Mg@PLGA MPs that are intra-muscularly injected close to the OA knee in a mouse model can act as an in situ depot that can evolve gaseous H2 continuously, mediated by the cycle of passivation/activation of Mg in body fluids, at a concentration that exceeds its therapeutic threshold. The analytical data that are obtained in the biochemical and histological studies indicate that the proposed Mg@PLGA MPs can effectively mitigate tissue inflammation and prevent cartilage from destruction, arresting the progression of OA changes.


Assuntos
Hidrogênio/química , Magnésio/uso terapêutico , Compostos Organometálicos/uso terapêutico , Osteoartrite/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Animais , Humanos , Magnésio/química , Camundongos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Osteoartrite/metabolismo , Osteoartrite/patologia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Propriedades de Superfície
3.
J Am Chem Soc ; 139(37): 12923-12926, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28870078

RESUMO

Hydrogen gas can reduce cytotoxic reactive oxygen species (ROS) that are produced in inflamed tissues. Inspired by natural photosynthesis, this work proposes a multicomponent nanoreactor (NR) that comprises chlorophyll a, l-ascorbic acid, and gold nanoparticles that are encapsulated in a liposomal (Lip) system that can produce H2 gas in situ upon photon absorption to mitigate inflammatory responses. Unlike a bulk system that contains free reacting molecules, this Lip NR system provides an optimal reaction environment, facilitating rapid activation of the photosynthesis of H2 gas, locally providing a high therapeutic concentration thereof. The photodriven NR system reduces the degrees of overproduction of ROS and pro-inflammatory cytokines both in vitro in RAW264.7 cells and in vivo in mice with paw inflammation that is induced by lipopolysaccharide (LPS). Histological examinations of tissue sections confirm the ability of the NR system to reduce LPS-induced inflammation. Experimental results indicate that the Lip NR system that can photosynthesize H2 gas has great potential for mitigating oxidative stress in tissue inflammation.


Assuntos
Ouro/metabolismo , Hidrogênio/metabolismo , Inflamação/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo , Fotossíntese , Animais , Ouro/química , Hidrogênio/química , Inflamação/induzido quimicamente , Lipopolissacarídeos/metabolismo , Camundongos , Conformação Molecular , Células RAW 264.7
6.
Circulation ; 132(8): 772-84, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26304669

RESUMO

BACKGROUND: Efficient cardiac function requires synchronous ventricular contraction. After myocardial infarction, the nonconductive nature of scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive biomaterial polymer that restores impulse propagation could synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue, allowing them to contribute to global heart function. METHODS AND RESULTS: We created a conductive polymer by grafting pyrrole to the clinically tested biomaterial chitosan to create a polypyrrole (PPy)-chitosan hydrogel. Cyclic voltammetry showed that PPy-chitosan had semiconductive properties lacking in chitosan alone. PPy-chitosan did not reduce cell attachment, metabolism, or proliferation in vitro. Neonatal rat cardiomyocytes plated on PPy-chitosan showed enhanced Ca(2+) signal conduction in comparison with chitosan alone. PPy-chitosan plating also improved electric coupling between skeletal muscles placed 25 mm apart in comparison with chitosan alone, demonstrating that PPy-chitosan can electrically connect contracting cells at a distance. In rats, injection of PPy-chitosan 1 week after myocardial infarction decreased the QRS interval and increased the transverse activation velocity in comparison with saline or chitosan, suggesting improved electric conduction. Optical mapping showed increased activation in the border zone of PPy-chitosan-treated rats. Echocardiography and pressure-volume analysis showed improvement in load-dependent (ejection fraction, fractional shortening) and load-independent (preload recruitable stroke work) indices of heart function 8 weeks after injection. CONCLUSIONS: We synthesized a biocompatible conductive biomaterial (PPy-chitosan) that enhances biological conduction in vitro and in vivo. Injection of PPy-chitosan better maintained heart function after myocardial infarction than a nonconductive polymer.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Condutividade Elétrica , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Infarto do Miocárdio/terapia , Polímeros/administração & dosagem , Animais , Animais Recém-Nascidos , Materiais Biocompatíveis/química , Células Cultivadas , Quitosana/administração & dosagem , Quitosana/química , Condutividade Elétrica/uso terapêutico , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Infarto do Miocárdio/fisiopatologia , Polímeros/química , Pirróis/administração & dosagem , Pirróis/química , Ratos , Ratos Sprague-Dawley
7.
J Am Chem Soc ; 138(16): 5222-5, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27075956

RESUMO

In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Implantes de Medicamento/farmacologia , Oxigenoterapia Hiperbárica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Cloreto de Cálcio/química , Anidrase Carbônica IX/metabolismo , Catalase/química , Catalase/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Implantes de Medicamento/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos Nus , Oxigênio , Peróxidos/química , Tomografia por Emissão de Pósitrons , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nanomedicine ; 12(2): 431-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711965

RESUMO

This work develops a composite system of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) that can synergistically induce physical and chemical damage to methicillin-resistant Staphylococcus aureus (MRSA) that are present in subcutaneous abscesses. rGO-IONP was synthesized by the chemical deposition of Fe(2+)/Fe(3+) ions on nanosheets of rGO in aqueous ammonia. The antibacterial efficacy of the as-prepared rGO-IONP was evaluated in a mouse model with MRSA-infected subcutaneous abscesses. Upon exposure to a near-infrared laser in vitro, rGO-IONP synergistically generated localized heat and large amounts of hydroxyl radicals, which inactivated MRSA. The in vivo results reveal that combined treatment with localized heat and oxidative stress that is caused by hydroxyl radicals accelerated the healing of wounds associated with MRSA-infected abscesses. The above results demonstrate that an rGO-IONP nanocomposite system that can effectively inactivate multiple-drug-resistant bacteria in subcutaneous infections was successfully developed. FROM THE CLINICAL EDITOR: The emergence of methicillin-resistant S. aureus (MRSA) has posed a significant problem in the clinical setting. Thus, it is imperative to develop new treatment strategies against this. In this study, the authors described the use of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) to induce heat and chemical damage to MRSA. This approach may provide a platform the design of other treatment modalities against multiple-drug-resistant bacteria.


Assuntos
Antibacterianos/uso terapêutico , Compostos Férricos/uso terapêutico , Grafite/uso terapêutico , Radical Hidroxila/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanocompostos/uso terapêutico , Infecções Estafilocócicas/terapia , Animais , Antibacterianos/química , Feminino , Compostos Férricos/química , Grafite/química , Temperatura Alta , Hipertermia Induzida/métodos , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Nanocompostos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Fototerapia/métodos , Infecções Estafilocócicas/metabolismo
9.
J Am Chem Soc ; 137(39): 12462-5, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26391111

RESUMO

Inflammation is associated with many diseases, in which activated inflammatory cells produce various reactive oxygen species (ROS), including H2O2. This work proposes an ultrasensitive ROS-responsive hollow microsphere (HM) carrier that contains an anti-inflammatory drug, an acid precursor consisting of ethanol and FeCl2, and sodium bicarbonate (SBC) as a bubble-generating agent. In cases of inflamed osteoarthritis, the H2O2 at low concentration diffuses through the HMs to oxidize their encapsulated ethanol in the presence of Fe(2+) by the Fenton reaction, establishing an acidic milieu. In acid, SBC decomposes to form CO2 bubbles, disrupting the shell wall of the HMs and releasing the anti-inflammatory drug to the problematic site, eventually protecting against joint destruction. These results reveal that the proposed HMs may uniquely exploit biologically relevant concentrations of H2O2 and thus be used for the site-specific delivery of therapeutics in inflamed tissues.


Assuntos
Anti-Inflamatórios/química , Preparações de Ação Retardada/química , Inflamação/tratamento farmacológico , Microesferas , Espécies Reativas de Oxigênio , Anti-Inflamatórios/farmacologia , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Gases/química , Limite de Detecção
10.
Angew Chem Int Ed Engl ; 54(34): 9890-3, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136242

RESUMO

Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P-glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT-11) and a NO-releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp-mediated MDR reversal agent. The site-specific drug release and the NO-reduced Pgp-mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell-killing threshold, eventually inducing its antitumor activity. These results reveal that this pH-responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Óxido Nítrico/síntese química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Camptotecina/química , Camptotecina/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Irinotecano , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Óxido Nítrico/química
11.
Adv Funct Mater ; 24(27): 4206-4220, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25477774

RESUMO

Stimuli-responsive materials are so named because they can alter their physicochemical properties and/or structural conformations in response to specific stimuli. The stimuli can be internal, such as physiological or pathological variations in the target cells/tissues, or external, such as optical and ultrasound radiations. In recent years, these materials have gained increasing interest in biomedical applications due to their potential for spatially and temporally controlled release of theranostic agents in response to the specific stimuli. This article highlights several recent advances in the development of such materials, with a focus on their molecular designs and formulations. The future of stimuli-responsive materials will also be explored, including combination with molecular imaging probes and targeting moieties, which could enable simultaneous diagnosis and treatment of a specific disease, as well as multi-functionality and responsiveness to multiple stimuli, all important in overcoming intrinsic biological barriers and increasing clinical viability.

12.
Small ; 10(20): 4100-5, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24976002

RESUMO

Treating inflammation with a dual-switch-controlled release system: The release of a drug from the developed microbead system occurs only in response to both an increase in local temperature and an acidic environmental pH. This dual-switch-controlled release system has the advantages of distinguishing between inflamed and healthy tissues to improve treatment efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Microesferas , Microscopia Confocal , Microscopia Eletrônica de Varredura
13.
ACS Nano ; 18(3): 2485-2499, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197613

RESUMO

Addressing the critical requirement for real-time monitoring of tumor progression in cancer care, this study introduces an innovative wearable platform. This platform employs a thermoplastic polyurethane (TPU) film embedded with hafnium oxide nanoparticles (HfO2 NPs) to facilitate dynamic tracking of tumor growth and regression in real time. Significantly, the synthesized HfO2 NPs exhibit promising characteristics as effective sonosensitizers, holding the potential to efficiently eliminate cancer cells through ultrasound irradiation. The TPU-HfO2 film, acting as a dielectric elastomer (DE) strain sensor, undergoes proportional deformation in response to changes in the tumor volume, thereby influencing its electrical impedance. This distinctive behavior empowers the DE strain sensor to continuously and accurately monitor alterations in tumor volume, determining the optimal timing for initiating HfO2 NP treatment, optimizing dosages, and assessing treatment effectiveness. Seamless integration with a wireless system allows instant transmission of detected electrical impedances to a smartphone for real-time data processing and visualization, enabling immediate patient monitoring and timely intervention by remote medical staff. By combining the dynamic tumor monitoring capabilities of the TPU-HfO2 film with the sonosensitizer potential of HfO2 NPs, this approach propels cancer care into the realm of telemedicine, representing a significant advancement in patient treatment.


Assuntos
Nanopartículas , Neoplasias , Dispositivos Eletrônicos Vestíveis , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ondas Ultrassônicas
14.
Tissue Eng Part A ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38661545

RESUMO

Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.

15.
Adv Mater ; 36(21): e2310351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591658

RESUMO

Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.


Assuntos
Doenças Metabólicas , Obesidade , Animais , Obesidade/metabolismo , Obesidade/terapia , Camundongos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Doenças Metabólicas/tratamento farmacológico , Eixo Encéfalo-Intestino , Titânio/química , Capsaicina/farmacologia , Capsaicina/administração & dosagem , Administração Oral , Terapia por Estimulação Elétrica/métodos , Camundongos Endogâmicos C57BL , Masculino , Compostos de Bário
16.
Adv Mater ; : e2404830, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895941

RESUMO

mRNA vaccines for cancer immunotherapy are commonly delivered using lipid nanoparticles (LNPs), which, when administered intravenously, may accumulate in the liver, potentially limiting their therapeutic efficacy. To overcome this challenge, the study introduces an oral mRNA vaccine formulation tailored for efficient uptake by immune cells in the gastrointestinal (GI) tract, known for its high concentration of immune cells, including dendritic cells (DCs). This formulation comprises mRNA complexed with ß-glucans (ßGlus), a potential adjuvant for vaccines, encapsulated within LNPs (ßGlus/mRNA@LNPs). The ßGlus/mRNA complexes within the small compartments of LNPs demonstrate a distinctive ability to partially dissociate and reassociate, responding to pH changes, effectively shielding mRNA from degradation in the harsh GI environment. Upon oral administration to tumor-bearing mice, ßGlus/mRNA@LNPs are effectively taken up by intestinal DCs and local nonimmune cells, bypassing potential liver accumulation. This initiates antigen-specific immune responses through successful mRNA translation, followed by drainage into the mesenteric lymph nodes to stimulate T cells and trigger specific adaptive immune responses, ultimately enhancing antitumor effects. Importantly, the vaccine demonstrates safety, with no significant inflammatory reactions observed. In conclusion, the potential of oral ßGlus/mRNA@LNPs delivery presents a promising avenue in cancer immunotherapy, offering needle-free and user-friendly administration for widespread adoption and self-administration.

17.
Acc Chem Res ; 45(4): 619-29, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22236133

RESUMO

Despite advances in drug-delivery technologies, successful oral administration of protein drugs remains an elusive challenge. When protein drugs are administered orally, they can rapidly denature or degrade before they reach their targets. Such drugs also may not absorb adequately within the small intestine. As a protein drug for treating diabetes, insulin is conventionally administered via subcutaneous (SC) injection, yet often fails to achieve the glucose homeostasis observed in nondiabetic subjects. Some of this difference may relate to insulin transport: normally, endogenously secreted insulin moves to the liver via portal circulation. When administered subcutaneously, insulin moves through the body via peripheral circulation, which can produce a peripheral hyperinsulinemia. In addition, because SC treatment requires multiple daily injections of insulin, patients often do not fully comply with treatment. Oral administration of exogenous insulin would deliver the drug directly into the liver through portal circulation, mimicking the physiological fate of endogenously secreted insulin. This characteristic may offer the needed hepatic activation, while avoiding hyperinsulinemia and its associated long-term complications. This Account demonstrates the feasibility of using chitosan nanoparticles for oral insulin delivery. Nanoparticle (NP) delivery systems may provide an alternative means of orally administering protein drugs. In addition to protecting the drugs against a harmful gastric environment, the encapsulation of protein drugs in particulate carriers can avert enzymatic degradation, while controlling the drug release and enhancing their absorption in the small intestine. Our recent study described a pH-responsive NP system composed of chitosan (CS) and poly(γ-glutamic acid) for oral delivery of insulin. As a nontoxic, soft-tissue compatible, cationic polysaccharide, CS also adheres to the mucosal surface and transiently opens the tight junctions (TJs) between contiguous epithelial cells. Therefore, drugs made with CS NPs would have delivery advantages over traditional tablet or powder formulations. This Account focuses on the premise that these CS NPs can adhere to and infiltrate the mucus layer in the small intestine. Subsequently, the infiltrated CS NPs transiently open the TJs between epithelial cells. Because they are pH-sensitive, the nanoparticles become less stable and disintegrate, releasing the loaded insulin. The insulin then permeates through the opened paracellular pathway and moves into the systemic circulation.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Insulina/administração & dosagem , Insulina/uso terapêutico , Nanopartículas/química , Administração Oral , Animais , Quitosana/efeitos adversos , Quitosana/farmacocinética , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Insulina/farmacologia
18.
Biomaterials ; 301: 122264, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562155

RESUMO

The formulation of a drug using high-energy emulsification commonly causes drug deterioration. Exploiting the well-known Diet Coke-Mentos reaction (DCMR), a U-shaped tube reactor that can generate an eruption of bubbly flow that can serve as a low-energy emulsification platform, is proposed. The liquid in the U-tube reactor is a supersaturated solution of aqueous CO2, which mimics Diet Coke. When glass beads with rough surfaces, mimicking Mentos, are dropped into the carbonated water, an eruptive bubbly flow is spontaneously created, mediating effective emulsification at a compound water-oil interface. Experimental results demonstrate that DCMR-mediated bubbly flow may provide a versatile platform for the production of "oil-in-water" or "water-in-oil" droplets and Pickering emulsion composite particles as drug carriers. The DCMR-derived bubbly flow is generated without significant temperature elevation, so the activity of the drug to be emulsified is unaffected. In vivo results reveal the feasibility of using this low-energy emulsification platform to formulate an emulsion system that contains catalase, a temperature-sensitive oxidoreductase, to mitigate an experimentally formed paw inflammation in mice. The as-proposed emulsification platform is attractive for formulating numerous drug delivery systems on a small-scale in a customized manner to meet the needs of each individual for personalized medicine.


Assuntos
Coque , Portadores de Fármacos , Camundongos , Animais , Emulsões , Água , Dieta
19.
Adv Mater ; 35(40): e2304735, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363886

RESUMO

The prognosis in cases of pancreatic ductal adenocarcinoma (PDAC) with current treatment modalities is poor owing to the highly desmoplastic tumor microenvironment (TME). Herein, a ß-glucans-functionalized zinc-doxorubicin nanoparticle system (ßGlus-ZnD NPs) that can be orally administered, is developed for targeted PDAC therapy. Following oral administration in PDAC-bearing mice, ßGlus-ZnD NPs actively target/transpass microfold cells, overcome the intestinal epithelial barrier, and then undergo subsequent phagocytosis by endogenous macrophages (ßGlus-ZnD@Mϕ). As hitchhiking cellular vehicles, ßGlus-ZnD@Mϕ transits through the intestinal lymphatic system and enters systemic circulation, ultimately accumulating in the tumor tissue as a result of the tumor-homing and "stealth" properties that are conferred by endogenous Mϕ. Meanwhile, the Mϕ that hitchhikes ßGlus-ZnD NPs is activated to produce matrix metalloproteinases, destroying the desmoplastic stromal barrier, and differentiates toward the M1 -like phenotype, modulating the TME and recruiting effector T cells, ultimately inducing apoptosis of the tumor cells. The combination of ßGlus-ZnD@Mϕ and immune checkpoint blockade effectively inhibits the growth of the primary tumor and suppresses the development of metastasis. It thus represents an appealing approach to targeted PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , beta-Glucanas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Macrófagos/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
20.
Small ; 8(23): 3584-8, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22893436

RESUMO

Pulsatile release: When a high-frequency magnetic field is applied, heat will be generated by coupling to the iron oxide nanoparticles encapsulated in the shells of PLGA hollow microspheres. As the temperature approaches the T(g) of PLGA, the polymer chains become more mobile, subsequently increasing the free volume of PLGA matrix and significantly enhancing the diffusion of drug molecules.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Química Farmacêutica , Portadores de Fármacos , Compostos Férricos/química , Campos Magnéticos , Nanopartículas , Tamanho da Partícula , Permeabilidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fluxo Pulsátil , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA