Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.953
Filtrar
1.
Pharmacol Rev ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39326898

RESUMO

Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.

2.
Traffic ; 23(12): 587-599, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36353954

RESUMO

Chromosomal region maintenance 1 (CRM1 also known as Xpo1 and exportin-1) is the receptor for the nuclear export controlling the intracellular localization and function of many cellular and viral proteins that play a crucial role in viral infections and cancer. The inhibition of CRM1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses, for the treatment of cancer, and to overcome therapy resistance. Recently, selinexor has been approved as the first CRM1 inhibitor for the treatment of multiple myeloma, providing proof of concept for this therapeutic option with a new mode of action. However, selinexor is associated with dose-limiting toxicity and hence, the discovery of alternative small molecule leads that could be developed as less toxic anticancer and antiviral therapeutics will have a significant impact in the clinic. Here, we report a CRM1 inhibitor discovery platform. The development of this platform includes reporter cell lines that monitor CRM1 activity by using red fluorescent protein or green fluorescent protein-labeled HIV-1 Rev protein with a strong heterologous nuclear export signal. Simultaneously, the intracellular localization of other proteins, to be interrogated for their capacity to undergo CRM1-mediated export, can be followed by co-culturing stable cell lines expressing fluorescent fusion proteins. We used this platform to interrogate the mode of nuclear export of several proteins, including PDK1, p110α, STAT5A, FOXO1, 3, 4 and TRIB2, and to screen a compound collection. We show that while p110α partially relies on CRM1-dependent nuclear export, TRIB2 is exported from the nucleus in a CRM1-independent manner. Compound screening revealed the striking activity of an organoselenium compound on the CRM1 nuclear export receptor.


Assuntos
HIV-1 , Transporte Ativo do Núcleo Celular , HIV-1/metabolismo , Carioferinas/metabolismo , Triazóis/metabolismo , Hidrazinas/farmacologia , Hidrazinas/metabolismo , Núcleo Celular/metabolismo
3.
Arch Biochem Biophys ; 758: 110074, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936682

RESUMO

Silicase, an enzyme that catalyzes the hydrolysis of silicon-oxygen bonds, is a crucial player in breaking down silicates into silicic acid, particularly in organisms like aquatic sponges with siliceous skeletons. Despite its significance, our understanding of silicase remains limited. This study comprehensively examines silicase from the demosponge Suberites domuncula, focusing on its kinetics toward CO2 as a substrate, as well as its silicase and esterase activity. It investigates inhibition and activation profiles with a range of inhibitors and activators belonging to various classes. By comparing its esterase activity to human carbonic anhydrase II, we gain insights into its enzymatic properties. Moreover, we investigate silicase's inhibition and activation profiles, providing valuable information for potential applications. We explore the evolutionary relationship of silicase with related enzymes, revealing potential functional roles in biological systems. Additionally, we propose a biochemical mechanism through three-dimensional modeling, shedding light on its catalytic mechanisms and structural features for both silicase activity and CO2 hydration. We highlight nature's utilization of enzymatic expertise in silica metabolism. This study enhances our understanding of silicase and contributes to broader insights into ecosystem functioning and Earth's geochemical cycles, emphasizing the intricate interplay between biology and the environment.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Dióxido de Carbono/metabolismo , Animais , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Humanos , Suberites/enzimologia , Suberites/metabolismo , Cinética , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Modelos Moleculares
4.
Arch Biochem Biophys ; 761: 110182, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39413948

RESUMO

Human carbonic anhydrases (hCAs) have essential roles in respiration, acid-base balance, and fluid secretion, with implications in diseases such as glaucoma, epilepsy, obesity, and cancer. Of the fifteen known hCAs, human CA I (hCA I) is particularly abundant in erythrocytes, playing a critical role in CO2 transport. Despite extensive research on hCA I, the impact of post-translational modifications (PTMs), particularly phosphorylation, on its catalytic activity and inhibitor binding remains poorly understood. Although multiple phosphorylation sites have been identified in hCA I in vivo through high-throughput proteomics studies including at the highly conserved Ser51 residue, the functional consequences of these modifications are not well characterized. We investigated the effects of a phosphomimetic mutation at Ser51 on hCA I, examining its catalytic efficiency and susceptibility to inhibition by sulfonamides and anions. Using a recombinant expression system and a stopped-flow kinetic assay, we characterized the CO2 hydration activity and inhibition profiles of S51E hCA I compared to the wild type enzyme. Our results demonstrate that the S51E mutation increases the catalytic turnover rate (kcat) from 2.0 × 105 s-1 to 2.6 × 105 s-1 but significantly decreases substrate affinity, raising the Michaelis constant (KM) from 4.0 mM to 13.9 mM, reducing overall catalytic efficiency by over 50 %. Inhibition studies with a panel of 41 sulfonamides revealed that the S51E mutation dramatically alters inhibitor sensitivity, particularly for the most effective inhibitors. For example, 15 of the 16 most effective sulfonamide inhibitors for hCA I (with KIs <350 nM) were an average of over 35-fold less effective in inhibiting S51E hCA I than the wild type. The KI of the anticonvulsant zonisamide increased from 31 nM for the wild type hCA I to 4.0 µM. The inhibition profile with a panel of 37 small anions further indicated that the S51E mutant exhibited significantly reduced susceptibility to inhibition by 24 out of 37 tested anions, with some KI values increasing by up to 11,000-fold for inhibitors like hydrogen sulfide. This study underscores the significant impact that phosphorylation may have on hCA I function and inhibition. By characterizing the effects of phosphorylation on the CO2 hydration activity and inhibitor sensitivity of hCA I, these findings represent early steps in developing more selective proteoform-specific inhibitors, which could lead to more effective treatments for diseases involving carbonic anhydrases.

5.
Bioorg Med Chem Lett ; 113: 129962, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278367

RESUMO

A small series of arylsulfonamide derivatives was designed and synthesized to study linear and cyclic inhibitors targeting human Carbonic Anhydrases (hCAs EC 4.2.1.1) as essential enzymes regulating (patho)-physiological processes. Particularly, the synthesis of these ten compounds was inspired to the well-known arylsulfonamides having flexible or constrained linkers able to maintain the two crucial moieties, anchoring zinc group and hydrophobic tail, in the optimized orientation within CA cavities of tumor-expressed isoforms hCA IX and hCA XII. The synthesized imine derivatives and related cyclic 1,3-thiazin-4-ones were screened in a stopped-flow carbon dioxide hydrase assay and proved to be effective inhibitors against hCA IX and hCA XII isoforms with Ki values ranging of 3.7-215.7 nM and 5.7-415.0 nM, respectively. Molecular docking studies of both series of arylsulfonamides were conducted to propose their binding mode within hCA IX and hCA XII active sites thus highlighting their distinct ability to occupy the two catalytic cavities. Moreover, the 4-[(3-cyanophenyl)methylidene]aminobenzene-1-sulfonamide 7 proved to reduce the cell viability of breast carcinoma (MCF-7) and colon rectal carcinoma (HCT-116) human cell lines under the fixed doses of 10 µM. These results encouraged us to continue our efforts in developing potent and efficient arylsulfonamides targeting hCA IX and hCA XII isoforms.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Simulação de Acoplamento Molecular , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antígenos de Neoplasias
6.
Org Biomol Chem ; 22(32): 6532-6542, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39072494

RESUMO

A wide range of 3-selenylindoles were synthesized via an eco-friendly approach that uses Oxone® as the oxidant in the presence of a catalytic amount of iodine. This mild and economical protocol showed broad functional group tolerance and operational simplicity. A series of novel selenylindoles bearing a benzenesulfonamide moiety were also synthesized and evaluated as carbonic anhydrase inhibitors of the human (h) isoforms hCa I, II, IX, and XII, which are involved in pathologies such as glaucoma and cancer. Several derivatives showed excellent inhibitory activity towards these isoforms in the nanomolar range, lower than that shown by acetazolamide.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Indóis , Iodo , Oxirredução , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Humanos , Anidrases Carbônicas/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Iodo/química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular
7.
Bioorg Med Chem ; 114: 117958, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39427529

RESUMO

A series of novel 4-alkylthio-2-chloro-5-[(2-arylmethylidene)hydrazinecarbonyl]benzenesulfonamide derivatives 3-22 were synthesized and evaluated for their inhibitory activity against human carbonic anhydrase isozymes hCA I, hCA II, hCA IX, and hCA XII. These compounds showed varying degrees of activity against the studied isoenzymes. However, the importance of substituent choice in designing potent carbonic anhydrase inhibitors is highlighted by the strong inhibition profiles of compounds 3 and 10 against hCA IX and the low average KI values for compounds 9 and 10 (134 nM and 77 nM, respectively). All the synthesized compounds were evaluated for their antiproliferative activity toward HeLa, HCT-116, and MCF-7 cell lines. Compounds 9 and 19 exhibited significant activity, particularly against the MCF-7 cell line (IC50 values of 4 µM and 6 µM, respectively). Notably, compound 9 demonstrated a high selectivity index (SI = 8.2) for MCF-7 cells. The antiproliferative effects of compounds 9 and 19 were linked to the induction of cell cycle arrest and apoptosis via the mitochondrial pathway and involved the activation of the MAPK/ERK signaling pathway. Inhibition of MAPK/ERK activity reduced the compounds' ability to induce cell cycle arrest and apoptosis, indicating the critical role of this pathway. These findings suggest that compounds 9 and 19 are promising candidates for further development as specific and potent anticancer agents targeting the MAPK/ERK pathway.


Assuntos
Antineoplásicos , Apoptose , Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Hidrazonas , Sulfonamidas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Apoptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Anidrases Carbônicas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia
8.
Bioorg Chem ; 143: 106976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000350

RESUMO

Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Boro/farmacologia , Anidrases Carbônicas/metabolismo , Isoformas de Proteínas , Compostos de Boro , Relação Estrutura-Atividade
9.
Bioorg Chem ; 145: 107192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382393

RESUMO

To investigate the intrinsic relation between carbonic anhydrase inhibition and anticancer activity, we have prepared four sets of diaryl urea molecules and tested for the inhibition of hCA-IX and XII on two breast cancer cell lines. Among 21 compounds, compound J2 (with -SO2NH2 group) and J16 (without -SO2NH2 group) showed the best activity under normoxic and hypoxic conditions. The IC50 values of J16 for MDA-MB-231 and MCF-7 cells, under normoxic condition were 6.3 and 3.7 µM respectively, which are 1.9/3.3 and 15.8 times better than U-4-Nitro and SLC-0111 respectively. Whereas, under the hypoxic condition the corresponding values were 12.4 and 1.1 µM (MDA-MB-231 and MCF-7 cells respectively), which are equal/8 times better than U-4-Nitro. Whereas, J2 showed better IC50 value than U-4-Nitro (6.3 µM) under normoxic condition for both MDA-MB-231 and MCF-7 cells (1.9/2.7 times). Compound J2 inhibits the activity of hCA-IX and XII in nanomolar concentration [Ki values 4.09 and 9.10 nM respectively with selectivity ratio of 1.8 and 0.8 with hCA-II]. The crystal structure and modelling studies demonstrates that the inhibition of CAs arises due to the blocking of the CO2 coordination site of zinc in its catalytic domain. However, J16 was found to be unable to inhibit the activity of hCAs (Ki > 89000 nM). qPCR and western blot analysis showed a significant reduction (1.5 to 20 fold) of the transcription and expression of HIF1A, CA9 and CA12 genes in presence of J2 and J16. Both J2 and J16 found to reduce accumulation of HIF-1α protein by inhibiting the chaperone activity of hHSP70 with IC50 values of 19.4 and 15.3 µM respectively. Perturbation of the hCA-IX and XII activity by binding at active site or by reduced expression or by both leads to the decrease of intracellular pH, which resulted in concomitant increase of reactive oxygen species by 2.6/2.0 (MCF-7) and 2.9/1.8 (MDA-MB-231) fold for J2/J16. Increased cyclin D1 expression in presence of J2 and J16 was presumed to be indirectly responsible for the apoptosis of the cancer cells. Expression of the other apoptosis markers Bcl-2, Bim, caspase 9 and caspase 3 substantiated the apoptosis mechanism. However, decreased transcription/expression of HIF1A/HIF-1α and hCA-IX/XII also implies the inhibition of the extracellular signal-regulated kinase pathway by J2 and J16.


Assuntos
Neoplasias da Mama , Ureia , Humanos , Feminino , Anidrase Carbônica IX , Relação Estrutura-Atividade , Ureia/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
10.
Bioorg Chem ; 144: 107096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290186

RESUMO

In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.


Assuntos
Inibidores da Anidrase Carbônica , Neoplasias , Semicarbazidas , Humanos , Anidrase Carbônica IX , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica I , Isoformas de Proteínas/metabolismo , Indóis/farmacologia , Estrutura Molecular
11.
Bioorg Chem ; 144: 107089, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237393

RESUMO

Eighteen novel compounds harboring the privileged thienopyrimidine scaffold (5a-q, and 6a),were designed based on molecular hybridization strategy. These compounds were synthesized and tested for their inhibitory activity against four different carbonic anhydrase isoforms: CA I, II, IX, and XII. Microwave and conventional techniques were applied for their synthesis. Compounds 5b, 5g, 5l, and 5p showed the highest inhibition activity against the four CA isoforms. Compound 5p exhibited promising inhibitory activity against CA II, CA IX and CA XII with KI values of8.6, 13.8, and 19 nM, respectively, relative to AAZ, where KIs = 12, 25, and 5.7 nM, respectively. Also, compound 5 l showed significant activity against the tumor-associated isoform CA IX with KI = 16.1 nM. All the newly synthesized compounds were also screened for their anticancer activity against NCI 60 cancer cell lines at a 10 µM concentration. Compound 5n showed 80.38, 83.95, and 87.39 % growth inhibition against the leukemic cell lines CCRF-CEM, HL-60 (TB), and RPMI-8226, respectively. Also, 5 h showed 87.57 % growth inhibition against breast cancer cell line MDA-MB-468; and 66.58 and 60.95 % inhibitionagainst renal cancer cell lines UO-31, and ACHN, respectively. A molecular docking studywas carried out to predict binding modes of our synthesized compounds in the binding pockets of the four carbonic anhydrase isoforms, and results revealed that compounds 5b, 5g, 5l, and 5p succeeded in mimicking the binding mode of AAZ through metal coordination with Zn+2 ion and binding to the amino acids Thr199, His94, and His96 that are critical for activity.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Pirimidinas , Inibidores da Anidrase Carbônica/química , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Anidrases Carbônicas/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/química , Isoformas de Proteínas/metabolismo
12.
Bioorg Chem ; 152: 107759, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213797

RESUMO

In the present study, the design and synthesis of novel coumarin derivatives 8a-h, 11a-d and 16a-c as potential selective inhibitors for the tumor associated human carbonic anhydrase isoforms (hCA IX and XII) was reported. All the newly synthesized derivatives showed potent to mild activity against the targeted CA IX (KI = 0.08-9.57 µM), with selectivity indices over CA I (SI = 2.0-21.9) and over CA II (SI = 1.1-15.7). They showed similar activities against CA XII (KI = 0.06-9.48 µM) with selectivity indices over CA I (SI = 1.4-21.2) and CA II (SI = 0.9-15.5). Compound 16b featuring sulfonamide function possessed promising inhibitory activities against the targeted isoforms CA IX and XII with KI values of 0.08 and 0.06 µM, respectively. Interestingly, it was found that using compound 16b at a nontoxic concentration as an adjuvant with Doxorubicin against MCF-7 cells enhanced the cytotoxicity under hypoxia by almost 3.5 folds; IC50 decreased from 25.74 to 7.43 µM. Therefore, compound 16b restored the cytotoxicity of Doxorubicin against MCF-7 cells under hypoxia, almost as normoxia. Furthermore, flow cytometry analysis of a combination treatment of compound 16b and Doxorubicin to the MCF7 cell line revealed an increase in cell cycle arrest at the G2/M phase and a more efficient apoptotic effect than Doxorubicin alone. Furthermore, compound 16b showed no cytotoxicity against normal breast MCF-10A cell line (IC50 = 296.25 µM).


Assuntos
Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Proliferação de Células , Cumarínicos , Relação Dose-Resposta a Droga , Doxorrubicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Doxorrubicina/farmacologia , Células MCF-7 , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos
13.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354500

RESUMO

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Compostos Organofosforados , Humanos , Anidrases Carbônicas/metabolismo , Sais , Relação Estrutura-Atividade , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarínicos/química , Guanidinas , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
14.
J Enzyme Inhib Med Chem ; 39(1): 2372731, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39012078

RESUMO

This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the ß-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.


Assuntos
Acinetobacter baumannii , Ânions , Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Anidrases Carbônicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Ânions/farmacologia , Ânions/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Estrutura Molecular
15.
J Enzyme Inhib Med Chem ; 39(1): 2346523, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847581

RESUMO

Toxoplasmosis, induced by the intracellular parasite Toxoplasma gondii, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within T. gondii, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, Trypanosoma cruzi, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the T. gondii genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for T. gondii survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Clonagem Molecular , Toxoplasma , Toxoplasma/enzimologia , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Cinética , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Estrutura Molecular , Ânions/química , Ânions/farmacologia , Ânions/metabolismo
16.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38606915

RESUMO

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Assuntos
Anidrases Carbônicas , Hidantoínas , Humanos , Anidrases Carbônicas/metabolismo , Anidrase Carbônica IX , Relação Estrutura-Atividade , Anidrase Carbônica I , Anidrase Carbônica II , Isoformas de Proteínas/metabolismo , Ftalimidas/farmacologia , Hidantoínas/farmacologia , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
17.
J Enzyme Inhib Med Chem ; 39(1): 2366236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38905127

RESUMO

A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.


Assuntos
Antineoplásicos , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quadruplex G , Humanos , Quadruplex G/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Ligantes , Células HeLa , Antígenos de Neoplasias/metabolismo , Modelos Moleculares
18.
Arch Pharm (Weinheim) ; 357(9): e2400259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38873921

RESUMO

Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.


Assuntos
Antineoplásicos , Benzotiazóis , Desenho de Fármacos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Relação Estrutura-Atividade
19.
Arch Pharm (Weinheim) ; 357(10): e2400366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991221

RESUMO

The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.


Assuntos
Inibidores da Anidrase Carbônica , Catepsina B , Triazóis , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Humanos , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Anidrases Carbônicas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia
20.
Arch Pharm (Weinheim) ; : e2400439, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079940

RESUMO

We synthesized herein 16 compounds (SUT1-SUT16) as potential carbonic anhydrase (CA) inhibitors utilizing the tail-approach design. Based on this strategy, we connected benzenesulfonamide, the zinc-binding scaffold, to different urea moieties with the 1,3,4-thiadiazole ring as a linker. We obtained the target compounds by the reaction of 4-(5-amino-1,3,4-thiadiazol-2-yl)benzenesulfonamide with aryl isocyanates. Upon confirmation of their structures, the compounds were screened for their ability to inhibit the tumor-related human (h) isoforms human carbonic anhydrase (hCA) IX and XII, as well as the physiologically dominant hCA I and II. Most of the molecules demonstrated Ki values ≤ 10 nM with different selectivity profiles. The binding modes of SUT9, SUT10, and SUT5, the most effective inhibitors of hCA II, IX, and XII, respectively, were predicted by molecular docking. SUT16 (4-{5-[3-(naphthalen-1-yl)ureido]-1,3,4-thiadiazol-2-yl}benzenesulfonamide) was found to be the most selective inhibitor of the cancer-associated isoforms hCA IX and XII over the off-target isoforms, hCAI and II. The interaction dynamics and stability of SUT16 within hCA IX and XII were investigated by molecular dynamics simulations as well as dynophore analysis. Based on computational data, increased hydrophobic contacts and hydrogen bonds in the tail part of these molecules within hCA IX and XII were found as favorable interactions leading to effective inhibitors of cancer-related isoforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA