Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772017

RESUMO

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Assuntos
Eutérios , Evolução Molecular , Genoma/genética , Musaranhos , Peçonhas/genética , Animais , Eutérios/classificação , Eutérios/genética , Eutérios/fisiologia , Duplicação Gênica , Masculino , Filogenia , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/fisiologia , Calicreínas Teciduais/genética
2.
Toxins (Basel) ; 14(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35737081

RESUMO

Venom is a dynamic trait that has contributed to the success of numerous organismal lineages. Predominantly composed of proteins, these complex cocktails are deployed for predation and/or self-defence. Many non-toxic physiological proteins have been convergently and recurrently recruited by venomous animals into their toxin arsenal. Phospholipase A2 (PLA2) is one such protein and features in the venoms of many organisms across the animal kingdom, including snakes of the families Elapidae and Viperidae. Understanding the evolutionary history of this superfamily would therefore provide insight into the origin and diversification of venom toxins and the evolution of novelty more broadly. The literature is replete with studies that have identified diversifying selection as the sole influence on PLA2 evolution. However, these studies have largely neglected the structural/functional constraints on PLA2s, and the ecology and evolutionary histories of the diverse snake lineages that produce them. By considering these crucial factors and employing evolutionary analyses integrated with a schema for the classification of PLA2s, we uncovered lineage-specific differences in selection regimes. Thus, our work provides novel insights into the evolution of this major snake venom toxin superfamily and underscores the importance of considering the influence of evolutionary and ecological contexts on molecular evolution.


Assuntos
Venenos Elapídicos , Toxinas Biológicas , Animais , Venenos Elapídicos/toxicidade , Elapidae , Evolução Molecular , Fosfolipases A2/genética , Poliésteres , Venenos de Serpentes/genética
3.
Front Mol Biosci ; 9: 1066793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601583

RESUMO

Distinct animal lineages have convergently recruited venoms as weaponry for prey capture, anti-predator defence, conspecific competition, or a combination thereof. Most studies, however, have been primarily confined to a narrow taxonomic breadth. The venoms of cone snails, snakes, spiders and scorpions remain particularly well-investigated. Much less explored are the venoms of wasps (Order: Hymenoptera) that are infamous for causing excruciating and throbbing pain, justifying their apex position on Schmidt's pain index, including some that are rated four on four. For example, the lesser banded wasp (V. affinis) is clinically important yet has only been the subject of a few studies, despite being commonly found across tropical and subtropical Asia. Stings from these wasps, especially from multiple individuals of a nest, often lead to clinically severe manifestations, including mastocytosis, myasthenia gravis, optic neuropathy, and life-threatening pathologies such as myocardial infarction and organ failure. However, their venom composition and activity remain unexplored in the Indian subcontinent. Here, we report the proteomic composition, transcriptomic profile, and biochemical and pharmacological activities of V. affinis venom from southern India. Our findings suggest that wasp venoms are rich in diverse toxins that facilitate antipredator defence. Biochemical and pharmacological assessments reveal that these toxins can exhibit significantly higher activities than their homologues in medically important snakes. Their ability to exert potent effects on diverse molecular targets makes them a treasure trove for discovering life-saving therapeutics. Fascinatingly, wasp venoms, being evolutionarily ancient, exhibit a greater degree of compositional and sequence conservation across very distant populations/species, which contrasts with the patterns of venom evolution observed in evolutionarily younger lineages, such as advanced snakes and cone snails.

4.
PLoS Negl Trop Dis ; 15(3): e0009247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764996

RESUMO

BACKGROUND: Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell's viper (Daboia russelii), which has a near pan-India distribution. Unfortunately, despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive. METHODS: Here, we employ an integrative approach comprising proteomic characterisation, biochemical analyses, pharmacological assessment, and venom toxicity profiling to elucidate the influence of varying ecology and environment on the pan-Indian populations of D. russelii. We then conducted in vitro venom recognition experiments and in vivo neutralisation assays to evaluate the efficacy of the commercial Indian antivenoms against the geographically disparate D. russelii populations. FINDINGS: We reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India. Contrary to our understanding of the consequences of venom variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surprisingly similar neutralisation potencies against the majority of the investigated populations, with the exception of low preclinical efficacy against the semi-arid population from northern India. However, the ability of Indian antivenoms to counter the severe morbid effects of Daboia envenoming remains to be evaluated. CONCLUSION: The concerning lack of antivenom efficacy against the north Indian population of D. russelii, as well as against two other 'big four' snake species in nearby locations, underscores the pressing need to develop pan-India effective antivenoms with improved efficacy in high snakebite burden locales.


Assuntos
Antivenenos/uso terapêutico , Daboia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/genética , Animais , Ecossistema , Índia/epidemiologia , Masculino , Camundongos , Filogeografia , Proteoma , Proteínas de Répteis/química , Proteínas de Répteis/genética , Mordeduras de Serpentes/epidemiologia , Espectrometria de Massas em Tandem , Venenos de Víboras/química
5.
J Proteomics ; 242: 104256, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33957314

RESUMO

Interpopulation venom variation has been widely documented in snakes across large geographical distances. This variability is known to markedly influence the effectiveness of snakebite therapy, as antivenoms manufactured against one population may not be effective against others. In contrast, the extent of intrapopulation venom variability, especially at finer geographical scales, remains largely uninvestigated. Moreover, given the historical focus on the 'big four' Indian snakes, our understanding of venom variation in medically important yet neglected snakes, such as the monocellate cobra (Naja kaouthia), remains unclear. To address this shortcoming, we investigated N. kaouthia venoms sampled across a small spatial scale (<50 km) in Eastern India. An interdisciplinary approach employed in this study unveiled considerable intrapopulation differences in the venom proteomic composition, pharmacological and biochemical activities, and toxicity profiles. Documentation of stark differences in venoms at such a finer geographical scale, despite the influence of similar ecological and environmental conditions, is intriguing. Furthermore, evaluation of in vitro and in vivo venom recognition and neutralisation potential of Indian polyvalent 'big four' antivenoms and Thai monovalent N. kaouthia antivenom revealed concerning deficiencies. These results highlight the negative impact of phylogenetic divergence and intrapopulation snake venom variation on the effectiveness of conventional antivenom therapy. SIGNIFICANCE: In contrast to our understanding of snake venom variation across large distances, which is theorised to be shaped by disparities in ecology and environment, intrapopulation variation at finer geographic scales remains scarcely investigated. Assessment of intrapopulation venom variability in Naja kaouthia at a small spatial scale (<50 km) in Eastern India unravelled considerable differences in venom compositions, activities and potencies. While the influence of subtle differences in prey preference and local adaptations cannot be ruled out, these findings, perhaps, also emphasise the role of accelerated molecular evolutionary regimes that rapidly introduce variations in evolutionarily younger lineages, such as advanced snakes. The inability of 'big four' Indian antivenoms and Thai N. kaouthia monovalent antivenom in countering these variations highlights the importance of phylogenetic considerations for the development of efficacious snakebite therapy. Thus, we provide valuable insights into the venoms of one of the most medically important yet neglected Indian snakes.


Assuntos
Naja naja , Mordeduras de Serpentes , Animais , Antivenenos , Venenos Elapídicos , Elapidae , Índia , Filogenia , Proteômica , Mordeduras de Serpentes/tratamento farmacológico , Tailândia
6.
PLoS Negl Trop Dis ; 15(2): e0009150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600405

RESUMO

BACKGROUND: Snake venom composition is dictated by various ecological and environmental factors, and can exhibit dramatic variation across geographically disparate populations of the same species. This molecular diversity can undermine the efficacy of snakebite treatments, as antivenoms produced against venom from one population may fail to neutralise others. India is the world's snakebite hotspot, with 58,000 fatalities and 140,000 morbidities occurring annually. Spectacled cobra (Naja naja) and Russell's viper (Daboia russelii) are known to cause the majority of these envenomations, in part due to their near country-wide distributions. However, the impact of differing ecologies and environment on their venom compositions has not been comprehensively studied. METHODS: Here, we used a multi-disciplinary approach consisting of venom proteomics, biochemical and pharmacological analyses, and in vivo research to comparatively analyse N. naja venoms across a broad region (>6000 km; seven populations) covering India's six distinct biogeographical zones. FINDINGS: By generating the most comprehensive pan-Indian proteomic and toxicity profiles to date, we unveil considerable differences in the composition, pharmacological effects and potencies of geographically-distinct venoms from this species and, through the use of immunological assays and preclinical experiments, demonstrate alarming repercussions on antivenom therapy. We find that commercially-available antivenom fails to effectively neutralise envenomations by the pan-Indian populations of N. naja, including a complete lack of neutralisation against the desert Naja population. CONCLUSION: Our findings highlight the significant influence of ecology and environment on snake venom composition and potency, and stress the pressing need to innovate pan-India effective antivenoms to safeguard the lives, limbs and livelihoods of the country's 200,000 annual snakebite victims.


Assuntos
Antivenenos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Naja naja , Animais , Antivenenos/imunologia , Ecossistema , Geografia , Índia , Proteoma/análise
7.
Toxins (Basel) ; 13(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477742

RESUMO

The Common Krait (Bungarus caeruleus) shares a distribution range with many other 'phenotypically-similar' kraits across the Indian subcontinent. Despite several reports of fatal envenomings by other Bungarus species, commercial Indian antivenoms are only manufactured against B. caeruleus. It is, therefore, imperative to understand the distribution of genetically distinct lineages of kraits, the compositional differences in their venoms, and the consequent impact of venom variation on the (pre)clinical effectiveness of antivenom therapy. To address this knowledge gap, we conducted phylogenetic and comparative venomics investigations of kraits in Southern and Western India. Phylogenetic reconstructions using mitochondrial markers revealed a new species of krait, Romulus' krait (Bungarus romulusi sp. nov.), in Southern India. Additionally, we found that kraits with 17 mid-body dorsal scale rows in Western India do not represent a subspecies of the Sind Krait (B. sindanus walli) as previously believed, but are genetically very similar to B. sindanus in Pakistan. Furthermore, venom proteomics and comparative transcriptomics revealed completely contrasting venom profiles. While the venom gland transcriptomes of all three species were highly similar, venom proteomes and toxicity profiles differed significantly, suggesting the prominent role of post-genomic regulatory mechanisms in shaping the venoms of these cryptic kraits. In vitro venom recognition and in vivo neutralisation experiments revealed a strong negative impact of venom variability on the preclinical performance of commercial antivenoms. While the venom of B. caeruleus was neutralised as per the manufacturer's claim, performance against the venoms of B. sindanus and B. romulusi was poor, highlighting the need for regionally-effective antivenoms in India.


Assuntos
Bungarotoxinas/química , Bungarus/genética , Bungarus/metabolismo , Proteoma , Animais , Antivenenos/química , Evolução Biológica , Bungarus/classificação , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Índia , Masculino , Camundongos , Mitocôndrias/genética , Tipagem Molecular , Paquistão , Filogenia , Proteômica , Especificidade da Espécie
8.
J Genet ; 982019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30945687

RESUMO

The medically important Indian red scorpion, Hottentotta tamulus, is one of the most poisonous scorpions of Indian subcontinent. We studied the haplotype diversity in eight populations of H. tamulus based on mitochondrial cytochrome oxidase subunit I (COI) partial gene sequence. Analyses revealed 22 haplotypes with a haplotype diversity of 0.941 and nucleotide diversity of 0.023. For the first two codon positions both transition and transversion types of substitutions were equally likely and the test for neutrality was not rejected. However, codon substitution pattern indicated that the gene has experienced purifying selection. Model-based clustering method indicated that the eight populations form three groups that correspond to high, moderate and low rainfall areas, indicating that there is biogeographical separation of haplotypes. Populations from three groups formed distinct clades in maximum likelihood analysis and median joining genetic network and were statistically supported by low within group and high among group variation in analyses of molecular variance. We provide the first account of haplotype diversity in Indian red scorpions and their biogeographical separation.


Assuntos
Variação Genética , Genética Populacional , Haplótipos , Proteínas Mitocondriais/genética , Escorpiões/classificação , Escorpiões/genética , Animais , DNA Mitocondrial , Redes Reguladoras de Genes , Índia , Filogenia
9.
Toxicon ; 158: 84-103, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529476

RESUMO

Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.


Assuntos
Venenos de Artrópodes/química , Artrópodes/química , Evolução Biológica , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Artrópodes/genética , Ecossistema , Filogenia
10.
PLoS Negl Trop Dis ; 13(12): e0007899, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31805055

RESUMO

BACKGROUND: Snakebite in India causes the highest annual rates of death (46,000) and disability (140,000) than any other country. Antivenom is the mainstay treatment of snakebite, whose manufacturing protocols, in essence, have remained unchanged for over a century. In India, a polyvalent antivenom is produced for the treatment of envenomations from the so called 'big four' snakes: the spectacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell's viper (Daboia russelii), and saw-scaled viper (Echis carinatus). In addition to the 'big four', India is abode to many other species of venomous snakes that have the potential to inflict severe clinical or, even, lethal envenomations in their human bite victims. Unfortunately, specific antivenoms are not produced against these species and, instead, the 'big four' antivenom is routinely used for the treatment. METHODS: We characterized the venom compositions, biochemical and pharmacological activities and toxicity profiles (mouse model) of the major neglected yet medically important Indian snakes (E. c. sochureki, B. sindanus, B. fasciatus, and two populations of N. kaouthia) and their closest 'big four' congeners. By performing WHO recommended in vitro and in vivo preclinical assays, we evaluated the efficiencies of the commercially marketed Indian antivenoms in recognizing venoms and neutralizing envenomations by these neglected species. FINDINGS: As a consequence of dissimilar ecologies and diet, the medically important snakes investigated exhibited dramatic inter- and intraspecific differences in their venom profiles. Currently marketed antivenoms were found to exhibit poor dose efficacy and venom recognition potential against the 'neglected many'. Premium Serums antivenom failed to neutralise bites from many of the neglected species and one of the 'big four' snakes (North Indian population of B. caeruleus). CONCLUSIONS: This study unravels disturbing deficiencies in dose efficacy and neutralisation capabilities of the currently marketed Indian antivenoms, and emphasises the pressing need to develop region-specific snakebite therapy for the 'neglected many'.


Assuntos
Antitoxinas/farmacologia , Antivenenos/uso terapêutico , Mordeduras de Serpentes/terapia , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade , Animais , Modelos Animais de Doenças , Índia , Masculino , Camundongos , Análise de Sobrevida , Resultado do Tratamento
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(4): 606-611, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27246558

RESUMO

Scorpions of the family Buthidae are widespread species in India. While studies are available on diversity and distribution of Indian buthid scorpions, no information is available on the phylogenetic relationships among the members of the family, within India and Asia in general. In the current study, we provide the first molecular phylogeny of buthid scorpions from central western India based on the mitochondrial cytochrome oxidase subunit I (COI) gene. Our analysis confirms the current placement of the species, previously assigned to Mesobuthus in the genus Hottentotta. However, the analysis also suggests that the member of this genus from India form a monophyletic group distinct from the members of Hottentotta from Africa. Species of Lychas formed a monophyletic group. Although Orthochirus was nested within the larger clade of buthidae comprising genera such as Androctonus, Buthacus, Buthus and Odontobuthus, the exact phylogenetic placement will require more taxonomic sampling of the known genera of Buthidae. We also show that there is a substantial genetic variation among the populations of medically important scorpion species Hottentotta tamulus, and the genetic distance is linearly correlated with the geographical distance between the populations.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Escorpiões/classificação , Análise de Sequência de DNA/métodos , Animais , Variação Genética , Índia , Proteínas Mitocondriais/genética , Filogenia , Escorpiões/genética
12.
J Genet ; 2019 Feb; 98: 1-9
Artigo | IMSEAR | ID: sea-215482

RESUMO

The medically important Indian red scorpion, Hottentotta tamulus, is one of the most poisonous scorpions of Indian subcontinent. We studied the haplotype diversity in eight populations of H. tamulus based on mitochondrial cytochrome oxidase subunit I (COI) partial gene sequence. Analyses revealed 22 haplotypes with a haplotype diversity of 0.941 and nucleotide diversity of 0.023. For the first two codon positions both transition and transversion types of substitutions were equally likely and the test for neutrality was not rejected. However, codon substitution pattern indicated that the gene has experienced purifying selection. Model-based clustering method indicated that the eight populations form three groups that correspond to high, moderate and low rainfall areas, indicating that there is biogeographical separation of haplotypes. Populations from three groups formed distinct clades in maximum likelihood analysis and median joining genetic network and were statistically supported by low within group and high among group variation in analyses of molecular variance. We provide the first account of haplotype diversity in Indian red scorpions and their biogeographical separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA