Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(5): e202302854, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37924228

RESUMO

A series of metal-free imidazole-benzimidazole catalysts (ImBenz-H, ImBenz-NO2 , ImBenz-OCH3 ) for oxygen reduction reaction (ORR) were prepared. We demonstrate that the electrocatalytic O2 reduction by ImBenz-NO2 with the electron-withdrawing group showed high selectivity toward H2 O with the number of electrons transferred (n=3.7) in a neutral aqueous solution. The highest ORR selectivity toward H2 O2 was achieved using ImBenz-H (n=2.4) in an alkaline solution. Electrochemical studies of reaction kinetics disclosed that the highest turnover frequencies were obtained from ImBenz-H in both neutral and alkaline aqueous solutions. The results prove that the ORR selectivity is tunable by modulating the substituent of the ImBenz catalysts. Furthermore, DFT calculations suggested that the ORR mechanism of ImBenz-H involves the electron transfer from imidazole-benzimidazole to O2 resulting in the formation of H2 O2 which supports the redox active properties of the catalysts ImBenz.

2.
Org Biomol Chem ; 21(35): 7180-7187, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624045

RESUMO

Base-catalyzed diastereodivergent thia-Michael addition of thiols to chiral ß-trifluoromethyl-α,ß-unsaturated N-acylated oxazolidin-2-ones is reported. By tuning the base-catalyst (i-Pr2NEt, DABCO, or P2-t-Bu), a range of chiral thia-Michael adducts was synthesized in good yields with high diastereoselectivities. A plausible mechanism was proposed on the basis of the experimental results. This work is complementary to the existing methods offering advantages, e.g., switchable diastereoselectivity using a readily synthesized chiral starting material, a cheap and readily available base catalyst, and a simple and practical operation, enabling synthetic application in organic synthesis.

3.
Org Biomol Chem ; 21(39): 7944-7953, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740400

RESUMO

Five undescribed polyketide metabolites, oudemansins E (1), M (2), P (3), and Q (4), and 9-methoxystrobilurin I (5), were isolated from cultures of basidiomycete Favolaschia minutissima TBRC-BCC 19434. A γ-lactone derivative (6) of noroudemansin A (8), which was previously reported as a semisynthetic compound, was also isolated. The absolute configuration of the isoprene-derived moiety of the known cometabolite 9-methoxystrobilurin E (9) was determined to be 2'R,6'S by comparison of the experimental and calculated ECD data, which was correlated to the new derivative 1. These compounds exhibited antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain). A putative minor natural product, namely 9-methoxystrobilurin P (13), was prepared by semisynthesis, which exhibited significant antimalarial activity (IC50 0.086 µM).


Assuntos
Antimaláricos , Basidiomycota , Antimaláricos/farmacologia , Butadienos , Plasmodium falciparum
4.
Inorg Chem ; 61(29): 11066-11074, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35815773

RESUMO

Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.


Assuntos
Compostos Férricos , Hidrogênio , Álcalis , Cátions/química , Etilenoglicóis , Hidrogênio/química , Oxirredução , Oxigênio/química
5.
J Chem Inf Model ; 62(2): 399-411, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34989561

RESUMO

Bacterial luciferase (Lux) catalyzes oxidation of reduced flavin mononucleotide (FMN) and aldehyde to form oxidized FMN and carboxylic acid via molecular oxygen with concomitant light generation. The enzyme is useful for various detection applications in biomedical experiments. Upon reacting with oxygen, the reduced FMN generates C4a-peroxy-FMN (FMNH-C4a-OO-) as a reactive intermediate, which is required for light generation. However, the mechanism and control of FMNH-C4a-OO- formation are not clear. This work investigated the reaction of FMNH-C4a-OO- formation in Lux using QM/MM methods. The B3LYP/6-31G*/CHARMM27 calculations indicate that Lux controls the formation of FMNH-C4a-OO- via the conserved His44 residue. The steps in intermediate formation are found to be as follows: (i) H+ reacts with O2 to generate +OOH. (ii) +OOH attacks C4a of FMNH- to generate FMNH-C4a-OOH. (iii) H+ is transferred from FMNH-C4a-OOH to His44 to generate FMNH-C4a-OO- while His44 stabilizes FMNH-C4a-OO- by forming a hydrogen bond to an oxygen atom. This controlling key mechanism for driving the change from FMNH-C4a-OOH to the FMNH-C4a-OO- adduct is confirmed because FMNH-C4a-OO- is more stable than FMNH-C4a-OOH in the luciferase active site.


Assuntos
Luciferases Bacterianas , Peróxidos , Flavinas/química , Flavinas/metabolismo , Cinética , Luciferases/metabolismo , Luciferases Bacterianas/química , Oxirredução
6.
J Nat Prod ; 84(2): 518-526, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372792

RESUMO

Three new diterpenoids, boesenmaxanes A-C (1-3), with an unprecedented core skeleton consisting of an unusual C-C bond between C-12 and an exo-cyclic methylene C-13, were isolated from the rhizome extracts of Boesenbergia maxwellii. The structures were elucidated by analysis of spectroscopic and X-ray diffraction data. Electronic circular dichroism spectra were used to determine the absolute configuration. All the isolates were evaluated for their cytotoxic effects, anti-HIV activity, and antimicrobial activity. Boesenmaxanes A and C (1 and 3) showed significant inhibitory activity in the syncytium reduction assay, with EC50 values of 55.2 and 27.5 µM, respectively.


Assuntos
Diterpenos/farmacologia , Zingiberaceae/química , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Linhagem Celular Tumoral , Diterpenos/isolamento & purificação , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Rizoma/química , Tailândia
7.
J Org Chem ; 85(17): 11340-11349, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786651

RESUMO

The hydroheteroarylation of allylbenzene with pyridine as catalyzed by Ni/AlMe3 and a N-heterocyclic carbene ligand has recently been established. Density functional calculations revealed that the common stepwise pathway, which involves the C-H oxidative addition of pyridine-AlMe3 before the migratory insertion of allylbenzene, is unlikely as the migratory insertion needs to overcome a prohibitively high energy barrier. In contrast, the ligand-to-ligand hydrogen transfer pathway is more favorable in which the hydrogen is transferred directly from the para-position of pyridine-AlMe3 to C2 of allylbenzene. Our distortion-interaction analysis and natural bond orbital analysis indicate that the interaction energy is strongly correlated with the extent of the charge transfer from the alkene (hydrogen acceptor) to the pyridine-AlMe3 (hydrogen donor), which dictates the selectivity of the H-transfer to the C2 position of allylbenzene. Then, the subsequent C-C reductive elimination of the regioselective linear product is facilitated by the steric hindrance of the IPr ligand. Understanding these key factors affecting the product regioselectivity is important to the development of catalysts for hydroheteroarylation of alkenes.

8.
J Org Chem ; 85(10): 6338-6351, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32233375

RESUMO

Reactions of o-alkynylisocyanobenzenes with a variety of alkanethiols (Alk-SH) provide the corresponding bis-thiolated indole derivatives. The advantages of the reaction include metal-free, room-temperature, mild reaction conditions and broad functional group compatibility. The reaction proceeds via nucleophilic addition of an alkanethiol to an isonitrile moiety, 5-exo cyclization, followed by nucleophilic addition of an alkanethiol to a 3-alkylidene indole intermediate. Density functional calculations on the electronic structures and relative free energies of 5-exo and 6-endo cyclization pathways support that the 5-exo cyclization is preferable.

9.
Angew Chem Int Ed Engl ; 59(29): 12007-12012, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307757

RESUMO

A series of heteroditopic receptors containing halogen bond (XB) and unprecedented chalcogen bond (ChB) donors integrated into a 3,5-bis-triazole pyridine structure covalently linked to benzo-15-crown-5 ether motifs exhibit remarkable cooperative recognition of halide anions. Multi-nuclear 1 H, 13 C, 125 Te and 19 F NMR, ion pair binding investigations reveal sodium cation-benzo-crown ether binding dramatically enhances the recognition of bromide and iodide halide anions, with the chalcogen bonding heteroditopic receptor notably displaying the largest enhancement of halide binding strength of over two hundred-fold, in comparison to the halogen bonding and hydrogen bonding heteroditopic receptor analogues. DFT calculations suggest crown ether sodium cation complexation induces a polarisation of the sigma hole of ChB and XB heteroditopic receptor donors as a significant contribution to the origin of the unique cooperativity exhibited by these systems.

10.
Chemistry ; 25(17): 4460-4471, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30690815

RESUMO

Understanding the reaction mechanism underlying the functionalization of C-H bonds by an enzymatic process is one of the most challenging issues in catalysis. Here, combined approaches using density functional theory (DFT) analysis and transient kinetics were employed to investigate the reaction mechanism of C-H bond oxidation in d-glucose, catalyzed by the enzyme pyranose 2-oxidase (P2O). Unlike the mechanisms that have been conventionally proposed, our findings show that the first step of the C-H bond oxidation reaction is a hydride transfer from the C2 position of d-glucose to N5 of the flavin to generate a protonated ketone sugar intermediate. The proton is then transferred from the protonated ketone intermediate to a conserved residue, His548. The results show for the first time how specific interactions around the sugar binding site promote the hydride transfer and formation of the protonated ketone intermediate. The DFT results are also consistent with experimental results including the enthalpy of activation obtained from Eyring plots, as well as the results of kinetic isotope effect and site-directed mutagenesis studies. The mechanistic model obtained from this work may also be relevant to other reactions of various flavoenzyme oxidases that are generally used as biocatalysts in biotechnology applications.

11.
J Am Chem Soc ; 137(29): 9363-74, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26144862

RESUMO

Understanding how flavin-dependent enzymes activate oxygen for their oxidation and oxygenation reactions is one of the most challenging issues in flavoenzymology. Density functional calculations and transient kinetics were performed to investigate the mechanism of oxygen activation in the oxygenase component (C2) of p-hydroxyphenylacetate 3-hydroxylase (HPAH). We found that the protonation of dioxygen by His396 via a proton-coupled electron transfer mechanism is the key step in the formation of the triplet diradical complex of flavin semiquinone and (•)OOH. This complex undergoes intersystem crossing to form the open-shell singlet diradical complex before it forms the closed-shell singlet C4a-hydroperoxyflavin intermediate (C4aOOH). Notably, density functional calculations indicated that the formation of C4aOOH is nearly barrierless, possibly facilitated by the active site arrangement in which His396 positions the proximal oxygen of the (•)OOH in an optimum position to directly attack the C4a atom of the isoalloxazine ring. The nearly barrierless formation of C4aOOH agrees well with the experimental results; based on transient kinetics and Eyring plot analyses, the enthalpy of activation for the formation of C4aOOH is only 1.4 kcal/mol and the formation of C4aOOH by C2 is fast (∼10(6) M(-1) s(-1) at 4 °C). The calculations identified Ser171 as the key residue that stabilizes C4aOOH by accepting a hydrogen bond from the H(N5) of the isoalloxazine ring. Both Ser171 and Trp112 facilitate H2O2 elimination by donating hydrogen bonds to the proximal oxygen of the OOH moiety during the proton transfer. According to our combined theoretical and experimental studies, the existence of a positively charged general acid at the position optimized for facilitating the proton-coupled electron transfer has emerged as an important catalytic feature for the oxygen activation process in flavin-dependent enzymes.


Assuntos
Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Prótons , Domínio Catalítico , Transporte de Elétrons , Ativação Enzimática , Peróxido de Hidrogênio/metabolismo , Cinética , Oxigenases de Função Mista/química , Modelos Moleculares , Teoria Quântica , Temperatura , Termodinâmica
12.
J Am Chem Soc ; 136(1): 241-53, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24368083

RESUMO

Determination of the mechanism of dioxygen activation by flavoenzymes remains one of the most challenging problems in flavoenzymology for which the underlying theoretical basis is not well understood. Here, the reaction of reduced flavin and dioxygen catalyzed by pyranose 2-oxidase (P2O), a flavoenzyme oxidase that is unique in its formation of C4a-hydroperoxyflavin, was investigated by density functional calculations, transient kinetics, and site-directed mutagenesis. Based on work from the 1970s-1980s, the current understanding of the dioxygen activation process in flavoenzymes is believed to involve electron transfer from flavin to dioxygen and subsequent proton transfer to form C4a-hydroperoxyflavin. Our findings suggest that the first step of the P2O reaction is a single electron transfer coupled with a proton transfer from the conserved residue, His548. In fact, proton transfer enhances the electron acceptor ability of dioxygen. The resulting ·OOH of the open-shell diradical pair is placed in an optimal position for the formation of C4a-hydroperoxyflavin. Furthermore, the C4a-hydroperoxyflavin is stabilized by the side chains of Thr169, His548, and Asn593 in a "face-on" configuration where it can undergo a unimolecular reaction to generate H2O2 and oxidized flavin. The computational results are consistent with kinetic studies of variant forms of P2O altered at residues Thr169, His548, and Asn593, and kinetic isotope effects and pH-dependence studies of the wild-type enzyme. In addition, the calculated energy barrier is in agreement with the experimental enthalpy barrier obtained from Eyring plots. This work revealed new insights into the reaction of reduced flavin with dioxygen, demonstrating that the positively charged residue (His548) plays a significant role in catalysis by providing a proton for a proton-coupled electron transfer in dioxygen activation. The interaction around the N5-position of the C4a-hydroperoxyflavin is important for dictating the stability of the intermediate.


Assuntos
Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Flavoproteínas Transferidoras de Elétrons/química , Flavinas/química , Oxigênio/química , Prótons , Teoria Quântica , Domínio Catalítico , Simulação por Computador , Estabilidade Enzimática , Modelos Moleculares , Oxirredução , Temperatura
13.
Dalton Trans ; 53(13): 6006-6019, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469898

RESUMO

The hydrogen evolution reaction is an important process for energy storage. The six-coordinate cobalt complex [CoIII(L1-)(LH)]2+ (LH = N-(4-amino-6-(pyridin-2-yl)-1,3,5-triazin-2-yl)benzamidine) was found to catalyze photocatalytic hydrogen evolution. In this work, we performed density functional calculations to obtain the reduction potentials and the proton-transfer free energy of possible intermediates to determine the preferred pathways for proton reduction. The mechanism involves the metal-based reduction of Co(III) to Co(II) before the protonation at the amidinate N on the pyridinyl-substituted diaminotriazine benzamidinate ligand L1- to form [CoII(LH)(LH)]2+. Essentially, the subsequent electron transfer is not metal-based reduction, but rather ligand-based reduction to form [CoII(LH)(LH˙1-)]1+. Through a proton-coupled electron transfer process, the cobalt hydride [CoIIH(LH)(LH2˙)]1+ is formed as the key intermediate for hydrogen evolution. As the cobalt hydride complex is coordinatively saturated, a structural change is required when the hydride on Co is coupled with the proton on pyridine. Notably, the redox-active nature of the ligand results in the low acidity of the protonated pyridine moiety of LH2˙, which impedes its function as a proton relay. Our findings suggest that separating the proton relay fragment from the electron reservoir fragment of the redox-active ligand is preferred for fully utilizing both features in catalytic H2 evolution.

14.
Sci Rep ; 14(1): 15497, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969824

RESUMO

We synthesized a class of ligands that feature single (L1) and dual amine-bis(triazole) chelates (L2 with a 1,3-phenylene linker and L3 with a 1,5-naphthalene linker). Our findings which were derived from UV-Vis titrations, crystal structure analysis of relevant copper complexes, and DFT calculations indicate the formation of both mononuclear CuBr(L1) and dinuclear (µ-Ln)(CuBr)2 (Ln = L2 and L3) complexes. The catalytic activities of CuBr/Ln, in combination with TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) co-catalyst and NMI (N-methylimidazole) for aerobic alcohol oxidation, reveal the following activity trend: CuBr/L3 > CuBr/L2 > CuBr/L1. Furthermore, electrochemical data from in-situ generated CuBr complexes suggest that the higher catalytic performance of CuBr/L3 is attributed to the presence of less stable mixed-valence and more reducible Cu(I)-L3-Cu(II) species compared to Cu(I)-L2-Cu(II). This difference is a result of weaker σ interactions between Cu-Namine, larger bridging π systems, and a longer Cu···Cu distance in the presence of L3. Additionally, the catalyst system, CuBr/L3/TEMPO/NMI, efficiently promotes the aerobic oxidation of benzyl alcohol to benzaldehyde at room temperature in CH3CN with a high turnover frequency (TOF) of 38 h-1 at 1 h.

15.
Phytochemistry ; 224: 114168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823569

RESUMO

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Assuntos
Antimaláricos , Carpóforos , Ganoderma , Plasmodium falciparum , Triterpenos , Ganoderma/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Carpóforos/química , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Animais , Estrutura Molecular , Células Vero , Chlorocebus aethiops , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/química , Lanosterol/isolamento & purificação , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
16.
Dalton Trans ; 53(26): 11050-11059, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885064

RESUMO

Alkyl aluminium plays a primary role in activating Ti within Ziegler-Natta (ZN) catalysts for propylene polymerization. We performed density functional calculations to explore the additional roles of AlEt3 and AlEt2Cl, in conjunction with diisobutyl phthalate (DIBP) internal donor and dicyclopentyl dimethoxysilane (DCPDMS) external donor, to enhance the stereoselectivity of propene insertion. Based on our calculated adsorption energies on the (MgCl2)13/TiCl2iBu cluster model for the ZN catalyst, the presence of DIBP on the cluster essentially facilitated AlEt2Cl adsorption while AlEt2Cl also promoted the adsorption of DIBP. The reaction between AlEt3 and DIBP on the cluster led to the extraction of DIBP, creating an available site for DCPDMS adsorption. While the stereoselectivity, represented by the difference in the activation energies between 1,2-re and 1,2-si insertions of propene, was negligible on the cluster containing only DIBP, it became significant on the clusters containing both AlEt2Cl and DIBP (and DCPDMS). AlEt2Cl plays a pivotal role in imposing steric effects near the Ti active site, thereby increasing stereoselectivity. Our findings suggest the importance of including AlEt2Cl alongside DIBP (and DCPDMS) in the ZN cluster model to investigate stereoselective propene insertion. Considering AlEt2Cl adsorption and AlEt3 reaction with internal donors is essential in developing Ziegler-Natta catalysts.

17.
Talanta ; 270: 125530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091746

RESUMO

A colorimetric and fluorescent sensor, selective for Cu2+ ions, was synthesized in two steps using a rhodamine-based compound attached to the semicarbazide-picolylamine moiety (RBP). Spectroscopic measurements, including UV-Vis absorption and fluorescence emission, were conducted in the semi-aqueous medium containing acetonitrile/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, denoted as MeCN/HEPES buffer (2:8, v/v, pH 7.0). The sensor exhibited high selectivity towards Cu2+ ions compared to other cations and demonstrated remarkable sensitivity towards Cu2+ ions, with a limit of detection at the nanomolar level. The calculated transitions indicated a 1:1 stoichiometric binding of RBP to Cu2+ ions based on a 4-coordination mode involving additional chelation in the semi-aqueous medium. The sensing mechanism for the detection of Cu2+ ions was investigated using high-resolution mass spectroscopy. The sensor could be employed as a real-time chemosensor for monitoring Cu2+ ions. Furthermore, the sensor has the potential for utilization in the detection of Cu2+ ions in actual water samples with the high precision and accuracy, as indicated by the small relative standard derivation values. The 50th percentile cytotoxicity concentration of RBP was found to be 22.92 µM. Additionally, the fluorescence bioimaging capability of RBP was demonstrated for the detection of Cu2+ ions in human hepatocellular carcinoma (HepG2) cells.


Assuntos
Cobre , Corantes Fluorescentes , Semicarbazidas , Humanos , Rodaminas/química , Cobre/química , Fluorescência , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Células Hep G2 , Cátions , Água , Espectrometria de Fluorescência
18.
Organometallics ; 42(21): 3120-3129, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38357656

RESUMO

Protolysis of AlMe3 or AlBui3 with 2-diisopropylphosphinopyrrole (1) yields molecules containing two flanking phosphines and a central Al-Me (2-Me), Al-iBu (2-iBu), or Al-H (2-H) unit. The reactions of 2-Me with [L2MCl]2 (L = cyclooctene or 1/2 1,5-cyclooctadiene and M = Rh or Ir) in the presence of pyridine produces PAlClP pincer complexes (3-Rh and 3-Ir) with Al-Cl and M-Me bonds. The analogous reaction of a mixture of 2-iBu and 2-H with [L2MCl]2 and pyridine resulted in the formation of analogous Rh-H (4-Rh) and Ir-H (4-Ir) complexes. Treatment of 3-Rh with NaBEt3H produced compound 5-Rh with an Al-Me and a Rh-H bond; the analogous reaction of 3-Ir did not result in a clean product. 4-Ir accepted an equivalent of H2 to produce 6-Ir with two terminal Ir-H bonds and one bridging Al-H-Ir moiety, whereas 4-Rh did not react with H2. The density functional theoretical treatment is in accord with this finding, highlights the likely mechanism for the H2 addition, and supports the bonding picture in 6-Ir arising from NMR and X-ray diffraction (XRD) observations. Spectroscopic data and XRD studies are consistent with distorted square-pyramidal structures (about Rh or Ir) for compounds 3-5, with an alane occupying the apical position. Complexes 3 and 4 possess some of the shortest known Rh-Al or Ir-Al distances.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121662, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905612

RESUMO

New chemosensors, L1-L3, based on the coumarin Schiff base scaffold with substituent modifications, have been designed and synthesized. The chemosensors L1-L3 exhibited the absorbance and fluorescence spectral changes that can discriminate Co2+, Ni2+, and Cu2+ ions. Sensor L1 demonstrated the ability to respond to Co2+, Ni2+, and Cu2+ ions. Remarkably, the slight modification of substituent on L2 has been observed to cause selective binding to Ni2+ and Cu2+ ions while L3 can specifically detect Cu2+ ions. The in-situ formation of metal and ligand complexes was determined by Job's plot analysis. The limit of detection and the sensing ability of all probes are estimated to be within the range of safe drinking water. Incorporation of the sensing compounds into a paper-based detection system using a laminated paper-based analytical device (LPAD) was demonstrated and found to be consistent to those obtained from the batchwise solution measurements.


Assuntos
Colorimetria , Corantes Fluorescentes , Aminocumarinas , Cobre/análise , Corantes Fluorescentes/química , Íons/análise , Espectrometria de Fluorescência
20.
Chem Commun (Camb) ; 58(68): 9468-9471, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35894790

RESUMO

Heptagon-embedded polycyclic aromatic dicarboximides were developed as new push-pull fluorescent dyes through palladium-catalysed [4+3] annulation followed by nucleophilic substitution. The introduction of a seven-membered ring in these push-pull systems can efficiently modulate the optical properties leading to an enhancement of the fluorescence quantum yields up to 0.93 with color tunable emission covering the visible-NIR spectrum.


Assuntos
Corantes Fluorescentes , Paládio , Catálise , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA