Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(3): 273-287, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917913

RESUMO

Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Transcriptoma , Proteômica , Enfisema Pulmonar/genética , Enfisema Pulmonar/complicações , Biomarcadores , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39269427

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exhibits considerable progression heterogeneity. We hypothesized that elastic principal graph analysis (EPGA) would identify distinct clinical phenotypes and their longitudinal relationships. METHODS: Cross-sectional data from 8,972 tobacco-exposed COPDGene participants, with and without COPD, were used to train a model with EPGA, using thirty clinical, physiologic and CT features. Principal component analysis (PCA) was used to reduce data dimensionality to six principal components. An elastic principal tree was fitted to the reduced space. 4,585 participants from COPDGene Phase 2 were used to test longitudinal trajectories. 2,652 participants from SPIROMICS tested external reproducibility. RESULTS: Our analysis used cross-sectional data to create an elastic principal tree, where the concept of time is represented by distance on the tree. Six clinically distinct tree segments were identified that differed by lung function, symptoms, and CT features: 1) Subclinical (SC); 2) Parenchymal Abnormality (PA); 3) Chronic Bronchitis (CB); 4) Emphysema Male (EM); 5) Emphysema Female (EF); and 6) Severe Airways (SA) disease. Cross-sectional SPIROMICS data confirmed similar groupings. 5-year data from COPDGene mapped longitudinal changes onto the tree. 29% of patients changed segment during follow-up; longitudinal trajectories confirmed a net flow of patients along the tree, from SC towards Emphysema, although alternative trajectories were noted, through airway disease predominant phenotypes, CB and SA. CONCLUSION: This novel analytic methodology provides an approach to defining longitudinal phenotypic trajectories using cross sectional data. These insights are clinically relevant and could facilitate precision therapy and future trials to modify disease progression.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38935868

RESUMO

RATIONALE: While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES: Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS: Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS: In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS: This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.

4.
Genomics ; 113(6): 4184-4195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763026

RESUMO

Cigarette smoking induces a profound transcriptomic and systemic inflammatory response. Previous studies have focused on gene level differential expression of smoking, but the genome-wide effects of smoking on alternative isoform regulation have not yet been described. We conducted RNA sequencing in whole-blood samples of 454 current and 767 former smokers in the COPDGene Study, and we analyzed the effects of smoking on differential usage of isoforms and exons. At 10% FDR, we detected 3167 differentially expressed genes, 945 differentially used isoforms and 160 differentially used exons. Isoform switch analysis revealed widespread 3' UTR lengthening associated with cigarette smoking. The lengthening of these 3' UTRs was consistent with alternative usage of distal polyadenylation sites, and these extended 3' UTR regions were significantly enriched with functional sequence elements including microRNA and RNA-protein binding sites. These findings warrant further studies on alternative polyadenylation events as potential biomarkers and novel therapeutic targets for smoking-related diseases.


Assuntos
Fumar Cigarros , Poliadenilação , Regiões 3' não Traduzidas , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Isoformas de Proteínas/genética , Fumar/efeitos adversos , Fumar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA