Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Genet ; 10(1): e1004092, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453988

RESUMO

Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle.


Assuntos
Hibridização Genética , Endogamia , Leishmania/genética , Leishmaniose/parasitologia , Animais , Genética Populacional , Humanos , Insetos Vetores/genética , Leishmania/crescimento & desenvolvimento , Leishmania/patogenicidade , Leishmaniose/genética , Leishmaniose/transmissão , Estágios do Ciclo de Vida/genética , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Turquia
2.
Parasitol Res ; 114(2): 551-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403377

RESUMO

The prevalences of heteroxenous parasites are influenced by the interplay of three main actors: hosts, vectors, and the parasites themselves. We studied blood protists in the nesting populations of raptors in two different areas of the Czech Republic. Altogether, 788 nestlings and 258 adult Eurasian sparrowhawks (Accipiter nisus) and 321 nestlings and 86 adult common buzzards (Buteo buteo) were screened for parasites by the microscopic examination of blood smears and by cultivation. We examined the role of shared vectors and parasite phylogenetic relationships on the occurrence of parasites. In different years and hosts, trypanosome prevalence ranged between 1.9 and 87.2 %, that of Leucocytozoon between 1.9 and 100 %, and Haemoproteus between 0 and 72.7 %. Coinfections with Leucocytozoon and Trypanosoma, phylogenetically distant parasites but both transmitted by blackflies (Simuliidae), were more frequent than coinfections with Leucocytozoon and Haemoproteus, phylogenetically closely related parasites transmitted by different vectors (blackflies and biting midges (Ceratopogonidae), respectively). For example, 16.6 % buzzard nestlings were coinfected with Trypanosoma and Leucocytozoon, while only 4.8 % with Leucocytozoon and Haemoproteus and 0.3 % with Trypanosoma and Haemoproteus. Nestlings in the same nest tended to have the same infection status. Furthermore, prevalence increased with the age of nestlings and with Julian date, while brood size had only a weak negative/positive effect on prevalence at the individual/brood level. Prevalences in a particular avian host species also varied between study sites and years. All these factors should thus be considered while comparing prevalences from different studies, the impact of vectors being the most important. We conclude that phylogenetically unrelated parasites that share the same vectors tend to have similar distributions within the host populations of two different raptor species.


Assuntos
Doenças das Aves/parasitologia , Falconiformes/parasitologia , Haemosporida/fisiologia , Infecções Protozoárias em Animais/parasitologia , Trypanosoma/fisiologia , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Aves/parasitologia , República Tcheca/epidemiologia , Feminino , Haemosporida/classificação , Haemosporida/genética , Haemosporida/isolamento & purificação , Especificidade de Hospedeiro , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Masculino , Filogenia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/transmissão , Aves Predatórias/parasitologia , Simuliidae/parasitologia , Simuliidae/fisiologia , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma/isolamento & purificação
3.
Eur J Protistol ; 90: 126007, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536235

RESUMO

Lankesterella parasites are blood coccidians that have recently gained attention as their records in common passerine species emerge. To date, their occurrence has been molecularly confirmed in several passerine genera, mainly among members of the families Paridae and Acrocephalidae. Despite their relatively high prevalence in some host populations, their life cycles remain unclear, mosquitoes or mites being the proposed vectors. The aim of this study was to reveal Lankesterella host specificity, focusing mainly on parasites of tit and warbler species (families Paridae and Acrocephalidae). We have determined the 18S rRNA gene sequences of Lankesterella from 35 individuals belonging to eight different host species. Phylogenetic analysis revealed that passerine Lankesterella are host-specific, with specificity at the host genus or species level. Besides Lankesterella, Isospora sequences were obtained from avian blood as well, pointing out the need for barcoding.


Assuntos
Apicomplexa , Coccídios , Eucoccidiida , Passeriformes , Humanos , Animais , Coccídios/genética , Filogenia , Especificidade de Hospedeiro , Passeriformes/parasitologia
4.
Parasit Vectors ; 16(1): 15, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641440

RESUMO

BACKGROUND: A high prevalence of parasites may result from life-long persistence of infection or from high reinfection rates. We have studied blood parasites in a breeding population of the accipitrid raptor, Eurasian sparrowhawk (Accipiter nisus), to determine parasite diversity and turnover. METHODS: During this 7-year study, 210 adult Eurasian sparrowhawks breeding in the city of Prague were checked for parasites using several diagnostic methods. RESULTS: In both female and male raptors, parasites of the genus Leucocytozoon were the most prevalent (92% and 85%, respectively) followed in decreasing order of prevalence by those of genus Trypanosoma (74% and 68%, respectively) and genus Haemoproteus (46% and 16%, respectively). The prevalence of all parasites increased with age in both sexes, with the females at each respective age having the higher prevalence. There was a positive association between Haemoproteus and Leucocytozoon infections. Persistence at the individual level was higher than incidence for Trypanosoma and Haemoproteus. In the case of Leucocytozoon and Trypanosoma, most individuals probably become infected in their first year of life or even before dispersal from the nest. The detected parasites belonged to Trypanosoma avium sensu stricto, Leucocytozoon sp. (haplotypes ACNI1 and ACNI3) and Leucocytozoon mathisi (haplotype ACNI4) and two new lineages of the Haemoproteus elani complex (ACCNIS6 and ACCNIS7). Detailed analysis of parasite lineages in individuals that were repeatedly sampled revealed lineage turnover that would otherwise remain hidden. Phylogenetic analysis revealed that the detected Haemoproteus belongs to a phylogenetically distant group whose taxonomic position requires further analysis. CONCLUSIONS: All three genera of blood parasites persist in infected individuals, thus enabling sustainability of vector transmission cycles. Prevalence increases with age; however, there is a high turnover of Leucocytozoon lineages. No clear evidence of parasite-induced mortality was found, and most of the individuals were infected early in life, particularly in the case of Leucocytozoon.


Assuntos
Doenças das Aves , Haemosporida , Falcões , Infecções Protozoárias em Animais , Trypanosoma , Animais , Feminino , Masculino , Doenças das Aves/parasitologia , Haemosporida/genética , Falcões/parasitologia , Incidência , Filogenia , Prevalência , Infecções Protozoárias em Animais/parasitologia , Trypanosoma/genética
5.
Front Immunol ; 14: 1145269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600780

RESUMO

Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.


Assuntos
Leishmania major , Dermatopatias , Animais , Camundongos , Leishmania major/genética , Interferon gama/genética , Citocinas , Imunoglobulina E
6.
Int J Syst Evol Microbiol ; 62(Pt 3): 745-754, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21515704

RESUMO

A novel avian trypanosome, Trypanosoma culicavium sp. nov., isolated from Culex mosquitoes, is described on the basis of naturally and experimentally infected vectors and bird hosts, localization in the vector, morphological characters and molecular data. This study provides the first comprehensive description of a trypanosome species transmitted by mosquitoes, in which parasites form plugs and rosettes on the stomodeal valve. Trypanosomes occurred as long epimastigotes and short trypomastigotes in vectors and culture and as long trypomastigotes in birds. Transmission of parasites to bird hosts was achieved exclusively by ingestion of experimentally infected Culex mosquito females by canaries (Serinus canaria), but not by Japanese quails (Coturnix japonica), nor by the bite of infected vectors, nor by ingestion of parasites from laboratory cultures. Transmission experiments and the identity of isolates from collared flycatchers (Ficedula albicollis) and Culex mosquitoes suggests that the natural hosts of T. culicavium are insectivorous songbirds (Passeriformes). Phylogenetic analyses of small-subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase gene sequences demonstrated that T. culicavium sp. nov. is more related to Trypanosoma corvi than to other avian trypanosomes (e.g. Trypanosoma avium and Trypanosoma bennetti).


Assuntos
Aves/parasitologia , Culex/parasitologia , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Trypanosoma/genética , Trypanosoma/patogenicidade
7.
Microorganisms ; 10(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336159

RESUMO

Louse flies (Hippoboscidae) are permanent ectoparasites of birds and mammals. They have a cosmopolitan distribution with more than 200 described species. The aim of this study was to reveal host-vector-parasite associations between louse flies, birds, and trypanosomes. A total of 567 louse fly specimens belonging to 7 species were collected from birds at several localities in Czechia, including the rare species Ornithophila metallica and Ornithoica turdi. There was a significant difference in the occurrence of Ornithomya avicularia and Ornithomya fringillina on bird hosts according to their migratory status, O. fringillina being found more frequently on long-distance migrants. Trypanosomes were found in four species, namely, Ornithomya avicularia, O. fringillina, O. biloba, and Ornithoica turdi; the later three species are identified in this paper as natural trypanosome vectors for the first time. The prevalence of trypanosomes ranged between 5 and 19%, the highest being in O. biloba and the lowest being in O. fringillina. Phylogenetic analysis of the SSU rRNA gene revealed that a vast majority of trypanosomes from hippoboscids belong to the avian T. corvi/culicavium group B. Four new lineages were revealed in group B, with louse flies being probable vectors for some of these trypanosome lineages. We also confirmed the transcontinental distribution of several trypanosome lineages. Our results show that hippoboscids of several genera are probable vectors of avian trypanosomes.

8.
Microorganisms ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208749

RESUMO

Trypanosomes belonging to Trypanosoma theileri group are mammalian blood parasites with keds and horse fly vectors. Our aim is to study to vector specificity of T. theileri trypanosomes. During our bloodsucking Diptera survey, we found a surprisingly high prevalence of T. theileri trypanosomes in mosquitoes (154/4051). Using PCR and gut dissections, we detected trypanosomes of T. theileri group mainly in Aedes mosquitoes, with the highest prevalence in Ae. excrucians (22%), Ae. punctor (21%), and Ae. cantans/annulipes (10%). Moreover, T. theileri group were found in keds and blackflies, which were reported as potential vectors for the first time. The vectorial capacity was confirmed by experimental infections of Ae. aegypti using our isolates from mosquitoes; sand fly Phlebotomus perniciosus supported the development of trypanosomes as well. Infection rates were high in both vectors (47-91% in mosquitoes, 65% in sandflies). Furthermore, metacyclic stages of T. theileri trypanosomes were observed in the gut of infected vectors; these putative infectious forms were found in the urine of Ae. aegypti after a second bloodmeal. On the contrary, Culex pipiens quinquefasciatus was refractory to experimental infections. According to a phylogenetic analysis of the 18S rRNA gene, our trypanosomes belong into three lineages, TthI, ThII, and a lineage referred to as here a putative lineage TthIII. The TthI lineage is transmitted by Brachycera, while TthII and ThIII include trypanosomes from Nematocera. In conclusion, we show that T. theileri trypanosomes have a wide range of potential dipteran vectors, and mosquitoes and, possibly, sandflies serve as important vectors.

9.
J Med Entomol ; 48(5): 985-90, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21936316

RESUMO

Phlebotomine sand flies (Diptera, Psychodidae) are important vectors of human pathogens. Moreover, they possess monoxenous parasites, including gregarines of the genus Psychodiella Votypka, Lantova, and Volf, which can negatively affect laboratory-reared colonies, and have been considered as potential candidates in biological control. In this study, effects of the gregarine Psychodiella sergenti Lantova, Volf, and Votypka on its natural host Phlebotomus sergenti Parrot were evaluated. The gregarines increased the mortality of immature sand fly stages, and this effect was even more apparent when the infected larvae were reared in more dense conditions. Similarly, the gregarines negatively affected the survival of adult males and females. However, no impact was observed on the mortality of blood-fed females, the proportion of females that laid eggs, and the number of eggs oviposited. The 10-times higher infection dose (50 versus five gregarine oocysts per one sand fly egg) led to -10 times more gamonts in fourth-instar larvae and two or three times more gamonts in females and males, respectively. Our study clearly shows that Ps. sergenti is harmful to its natural host under laboratory conditions. However, its potential for use in biological control is questionable as a result of several factors, including this parasite's strict host specificity.


Assuntos
Apicomplexa/fisiologia , Phlebotomus/parasitologia , Animais , Comportamento Alimentar , Feminino , Interações Hospedeiro-Parasita , Controle de Insetos , Masculino , Oviposição , Controle Biológico de Vetores , Dinâmica Populacional , Organismos Livres de Patógenos Específicos
10.
Microorganisms ; 9(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34683422

RESUMO

Avian trypanosomes are cosmopolitan and common protozoan parasites of birds; nevertheless, knowledge of their life cycles and vectors remains incomplete. Mosquitoes have been confirmed as vectors of Trypanosoma culicavium and suggested as vectors of T. thomasbancrofti; however, transmission has been experimentally confirmed only for the former species. This study aims to confirm the experimental transmission of T. thomasbancrofti to birds and its localization in vectors. Culex pipiens were fed on blood using four strains of T. thomasbancrofti, isolated from vectors and avian hosts; all strains established infections, and three of them were able to develop high infection rates in mosquitoes. The infection rate of the culicine isolates was 5-28% for CUL15 and 48-81% for CUL98, 67-92% for isolate OF19 from hippoboscid fly, while the avian isolate PAS343 ranged between 48% and 92%, and heavy infections were detected in 90% of positive females. Contrary to T. culicavium, trypanosomes were localized in the hindgut, where they formed rosettes with the occurrence of free epimastigotes in the hindgut and midgut during late infections. Parasites occurred in urine droplets produced during mosquito prediuresis. Transmission to birds was achieved by the ingestion of mosquito guts containing trypanosomes and via the conjunctiva. Bird infection was proven by blood cultivation and xenodiagnosis; mature infections were present in the dissected guts of 24-26% of mosquitoes fed on infected birds. The prevalence of T. thomasbancrofti in vectors in nature and in avian populations is discussed in this paper. This study confirms the vectorial capacity of culicine mosquitoes for T. thomasbancrofti, a trypanosome related to T. avium, and suggests that prediuresis might be an effective mode of trypanosome transmission.

11.
J Invertebr Pathol ; 105(2): 182-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20627106

RESUMO

Two new gregarines in the recently erected genus Psychodiella (formerly Ascogregarina), Psychodiella sergenti n. sp. and Psychodiella tobbi n. sp., are described based on morphology and life cycle observations conducted on larvae and adults of their natural hosts, the sand flies Phlebotomus sergenti and Phlebotomus tobbi, respectively. The phylogenetic analyses inferred from small subunit ribosomal DNA (SSU rDNA) sequences indicate the monophyly of newly described species with Psychodiella chagasi. Ps. sergenti n. sp. and Ps. tobbi n. sp. significantly differ from each other in the life cycle and in the size of life stages. The sexual development of Ps. sergenti n. sp. (syzygy, formation of gametocysts and oocysts) takes place exclusively in blood-fed Ph. sergenti females, while the sexual development of Ps. tobbi n. sp. takes place also in males and unfed females of Ph. tobbi. The susceptibility of Phlebotomus perniciosus, Phlebotomus papatasi, Ph. sergenti, Ph. tobbi, and Phlebotomus arabicus to both gregarines was examined by exposing 1st instar larvae to parasite oocysts. High host specificity was observed, as both gregarines were able to fully develop and complete regularly the life cycle only in their natural hosts. Both gregarines are considered as serious pathogens in laboratory-reared colonies of Old World sand flies.


Assuntos
Apicomplexa/fisiologia , Especificidade de Hospedeiro/fisiologia , Estágios do Ciclo de Vida , Psychodidae/parasitologia , Animais , Apicomplexa/classificação , Apicomplexa/citologia , Apicomplexa/crescimento & desenvolvimento , Feminino , Especiação Genética , Masculino , Filogenia
12.
Immunogenetics ; 61(9): 619-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19705113

RESUMO

Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host-pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites' elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c x CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNgamma levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNgamma), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype-Lmr21: skin lesions and IFNgamma levels, Lmr22: IL-4 levels, Lmr23: IFNgamma levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Animais , Feminino , Interferon gama/sangue , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Linfonodos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Caracteres Sexuais , Pele/patologia , Baço/parasitologia
13.
Front Immunol ; 10: 1083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231359

RESUMO

Leishmaniasis is a serious health problem in many countries, and continues expanding to new geographic areas including Europe and USA. This disease, caused by parasites of Leishmania spp. and transmitted by phlebotomine sand flies, causes up to 1.3 million new cases each year and despite efforts toward its functional dissection and treatment it causes 20-50 thousands deaths annually. Dependence of susceptibility to leishmaniasis on sex and host's genes was observed in humans and in mouse models. Several laboratories defined in mice a number of Lmr (Leishmania major response) genetic loci that control functional and pathological components of the response to and outcome of L. major infection. However, the development of its most aggressive form, visceral leishmaniasis, which is lethal if untreated, is not yet understood. Visceral leishmaniasis is caused by infection and inflammation of internal organs. Therefore, we analyzed the genetics of parasite load, spread to internal organs, and ensuing visceral pathology. Using a new PCR-based method of quantification of parasites in tissues we describe a network-like set of interacting genetic loci that control parasite load in different organs. Quantification of Leishmania parasites in lymph nodes, spleen and liver from infected F2 hybrids between BALB/c and recombinant congenic strains CcS-9 and CcS-16 allowed us to map two novel parasite load controlling Leishmania major response loci, Lmr24 and Lmr27. We also detected parasite-controlling role of the previously described loci Lmr4, Lmr11, Lmr13, Lmr14, Lmr15, and Lmr25, and describe 8 genetic interactions between them. Lmr14, Lmr15, Lmr25, and Lmr27 controlled parasite load in liver and lymph nodes. In addition, Leishmania burden in lymph nodes but not liver was influenced by Lmr4 and Lmr24. In spleen, parasite load was controlled by Lmr11 and Lmr13. We detected a strong effect of sex on some of these genes. We also mapped additional genes controlling splenomegaly and hepatomegaly. This resulted in a systematized insight into genetic control of spread and load of Leishmania parasites and visceral pathology in the mammalian organism.


Assuntos
Leishmania major , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Carga Parasitária , Animais , Feminino , Interações Hospedeiro-Parasita , Masculino , Camundongos , Caracteres Sexuais
14.
Infect Genet Evol ; 8(2): 159-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18243814

RESUMO

An intraspecific study on Phlebotomus papatasi, the main proven vector of Leishmania major among the members of the subgenus Phlebotomus, was performed. The internal transcribed spacer 2 (ITS 2) of rDNA and the ND4 gene of mt DNA were sequenced from 26 populations from 18 countries (Albania, Algeria, Cyprus, Egypt, Greece, India, Iran, Israel, Italy, Lebanon, Morocco, Saudi Arabia, Spain, Syria, Tunisia, Turkey, Yugoslavia and Yemen), and compared. Samples also included three other species belonging to the subgenus Phlebotomus: P. duboscqi, a proven vector of L. major in the south of Sahara (three populations from Burkina Faso, Kenya and Senegal), P. bergeroti, a suspected vector of L. major (three populations from Oman Sultanate, Iran and Egypt), and one population of P. salehi from Iran. A phylogenetic study was carried out on the subgenus Phlebotomus. Our results confirm the validity of the morphologically characterized taxa. The position of P. salehi is doubtful. Variability in P. papatasi contrasts with that observed within other species having a wide distribution like P. (Paraphlebotomus) sergenti in the Old World or Lutzomyia (Lutzomyia) longipalpis in the New World. Consequently, it could be hypothesized that all populations of P. papatasi over its distribution area have similar vectorial capacities. The limits of the distribution area of L. major are correlated with the distribution of common rodents acting as hosts of the parasites.


Assuntos
DNA Mitocondrial/análise , DNA Espaçador Ribossômico/genética , Variação Genética , NADH Desidrogenase/genética , Febre por Flebótomos/epidemiologia , Phlebotomus/genética , Animais , Sequência de Bases , Frequência do Gene , Genética Populacional , Geografia , Haplótipos , Humanos , Filogenia , Análise de Sequência de DNA
15.
Microbes Infect ; 9(3): 317-24, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17307009

RESUMO

Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.


Assuntos
Glicoesfingolipídeos/metabolismo , Leishmania/crescimento & desenvolvimento , Psychodidae/parasitologia , Acetilgalactosamina/metabolismo , Animais , Sistema Digestório/parasitologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Insetos Vetores , Leishmania/classificação , Leishmania infantum/fisiologia , Phlebotomus/classificação , Phlebotomus/parasitologia , Psychodidae/classificação
16.
Parasit Vectors ; 10(1): 224, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482865

RESUMO

BACKGROUND: Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. RESULTS: Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55-87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. CONCLUSIONS: Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.


Assuntos
Doenças das Aves/transmissão , Aves/parasitologia , Ceratopogonidae/parasitologia , Insetos Vetores/parasitologia , Tripanossomíase/veterinária , Animais , Doenças das Aves/parasitologia , Canários/parasitologia , Ceratopogonidae/anatomia & histologia , Trato Gastrointestinal/parasitologia , Especificidade de Hospedeiro , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma/fisiologia , Trypanosoma/ultraestrutura , Tripanossomíase/diagnóstico , Tripanossomíase/parasitologia , Tripanossomíase/transmissão
17.
Microbes Infect ; 8(7): 1691-4, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16815725

RESUMO

The ability of the sand fly Phlebotomus (Adlerius) arabicus to transmit Leishmania tropica was studied experimentally using hyraxes (Procavia capensis), natural reservoir hosts of the parasite. Sand flies became infected with L. tropica after feeding on a lesion of needle-inoculated hyrax. Moreover, P. arabicus fed with L. tropica promastigotes transmitted the parasite to hyraxes by bite during a second bloodmeal. Although the animals remained asymptomatic after infective sand fly bite, they were PCR positive and infectious for naive sand flies. We have thus demonstrated cyclical transmission of L. tropica by P. arabicus in hyraxes. This confirms experimentally the vectorial competence of P. (Adlerius) arabicus, and demonstrates that asymptomatic reservoir hosts are infectious to appropriate vectors.


Assuntos
Reservatórios de Doenças , Procaviídeos/parasitologia , Insetos Vetores/parasitologia , Leishmania tropica , Leishmaniose Cutânea/transmissão , Phlebotomus/parasitologia , Animais , DNA de Protozoário/sangue , DNA de Protozoário/genética , Masculino , Reação em Cadeia da Polimerase
18.
Biol Sex Differ ; 7: 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895891

RESUMO

BACKGROUND: Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance. METHODS: We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental "donor" strain STS and 87.5% genes from the "background" strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA. RESULTS: The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females. CONCLUSIONS: We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.

19.
Microbes Infect ; 5(6): 471-4, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12758274

RESUMO

Phlebotomus sergenti is a natural vector of Leishmania tropica. However, the ability of P. sergenti to transmit L. tropica by bite has not been proven experimentally yet. We have transmitted L. tropica to golden hamsters and BALB/c mice by the bite of P. sergenti. Sand flies and Leishmania both originated from an anthroponotic cutaneous leishmaniasis focus in Urfa, Turkey. P. sergenti females from a laboratory colony were infected by feeding on lesions of needle-inoculated hamsters or mice. Gravid females were allowed to refeed on uninfected hosts 9-15 d after the infective feeding. At the second feeding, some infected females took a full blood meal, while others only a partial one; some females failed to feed at all. The ability of infected females to take a blood meal did not correlate with the parasite transmissibility. In four BALB/c mice, lesions developed after 1-6 months. In two albino hamsters (Mesocricetus auratus), lesions developed 1 month after the infective feeding, and Leishmania could be reisolated from these sites. Another hamster did not develop a lesion; however, the feeding site and the adjacent ear were PCR positive 1 year after infective feeding. Our results show that dissemination to other parts of host body occurs in L. tropica after sand fly bite. Experimental transmission of the parasite confirms that P. sergenti is a natural vector of L. tropica.


Assuntos
Mordeduras e Picadas de Insetos/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Leishmania tropica/fisiologia , Leishmaniose/transmissão , Phlebotomus/fisiologia , Phlebotomus/parasitologia , Animais , Cricetinae , Feminino , Leishmaniose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
20.
Microbes Infect ; 5(5): 361-4, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12737990

RESUMO

Black rats (Rattus rattus) receiving Leishmania tropica injected intradermally into the ear were studied for the persistence of parasites and infectivity to natural sand fly vector. The mammalian host, the parasite, and the vector all originated from the endemic focus of Urfa, Turkey. Rats did not develop lesions or any apparent signs of disease, although at the site of inoculation they harboured live parasites capable of infecting sand flies. The number of L. tropica amastigotes detected in the inoculated ear by quantitative real-time PCR ranged from 5 x 10(3) to 10(6). Parasite DNA was also present in the tail and contralateral ear, sites distant from inoculation. After feeding on the ears of asymptomatic rats, Phlebotomus sergenti became infected with L. tropica. The average infection rate was 2.9%, and rats were infective for sand flies even 24 months post infection. The infectivity of the vertebrate host for insect vector was therefore not linked to the symptomatic stage of the infection. Such lack of correlation between clinical symptoms and infectivity to sand flies was reported previously for Leishmania infantum, the agent of visceral leishmaniasis; for species causing cutaneous leishmaniasis, however, this is the first evidence of transmission from a host without any visible cutaneous changes. If confirmed in the field, transmission from the asymptomatic host would be of great epidemiological significance.


Assuntos
Leishmania tropica/patogenicidade , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/transmissão , Muridae/parasitologia , Phlebotomus/parasitologia , Animais , Cricetinae , DNA de Protozoário/análise , Feminino , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Leishmania tropica/genética , Leishmania tropica/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Camundongos , Reação em Cadeia da Polimerase , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA