Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Aerosol Sci ; 178: 1-20, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751612

RESUMO

The U. S. Environmental Protection Agency in collaboration with the U. S. Air Force Arnold Engineering Development Complex conducted the VAriable Response In Aircraft nvPM Testing (VARIAnT) 3 and 4 test campaigns to compare nonvolatile particulate matter (nvPM) emissions measurements from a variety of diffusion flame combustion aerosol sources (DFCASs), including a Cummins diesel engine, a diesel powered generator, two gas turbine start carts, a J85-GE-5 turbojet engine burning multiple fuels, and a Mini-CAST soot generator. The VARIAnT research program was devised to understand reported variability in the ARP6320A sampling system nvPM measurements. The VARIAnT research program has conducted four test campaigns to date with the VARIAnT 3 and 4 campaigns devoted to: (1) assessing the response of three different black carbon mass analyzers to particles of different size, morphology, and chemical composition; (2) characterizing the particles generated by 6 different combustion sources according to morphology, effective density, and chemical composition; and (3) assessing any significant difference between black carbon as determined by the 3 mass analyzers and the total PM determined via other techniques. Results from VARIAnT 3 and 4 campaigns revealed agreement of about 20% between the Micro-Soot Sensor, the Cavity Attenuated Phase Shift (CAPS PMSSA) monitor and the thermal-optical reference method for elemental carbon (EC) mass, independent of the calibration source used. For the LII-300, the measured mass concentrations in VARIAnT 3 fall within 18% and in VARIAnT 4 fall within 27% of the reference EC mass concentration when calibrated on a combustor rig in VARIAnT 3 and on an LGT-60 start cart in VARIAnT 4, respectively. It was also found that the three mass instrument types (MSS, CAPS PMSSA, and LII-300) can exhibit different BC to reference EC ratios depending on the emission source that appear to correlate to particle geometric mean mobility diameter, morphology, or some other parameter associated with particle geometric mean diameter (GMD) with the LII-300 showing a slightly stronger apparent trend with GMD. Systematic differences in LII-300 measured mass concentrations have been reduced by calibrating with a turbine combustion as a particle source (combustor or turbine engine). With respect to the particle size measurements, the sizing instruments (TSI SMPS, TSI EEPS, and Cambustion DMS 500) were found to be in general agreement in terms of size distributions and concentrations with some exceptions. Gravimetric measurements of the total aerosol mass produced by the various DFCAs differed from the reference EC, BC and integrated particle size distribution measured aerosol masses. The measurements of particle size distributions and single particle analysis performed using the miniSPLAT indicated the presence of larger particles (≳150 nm) having more compact morphologies, higher effective density, and a composition dominated by OC and containing ash. This increased large particle fraction is also associated with higher values of single scattering albedo measured by the CAPS PMSSA instrument and higher OC measurements. These measurements indicate gas turbine engine emissions can be a more heterogeneous mix of particle types beyond the original E-31 assumption that engine exit exhaust particles are mainly composed of black carbon.

2.
J Aerosol Sci ; 154: 1-16, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35949248

RESUMO

The SAE International has published Aerospace Information Report (AIR) 6241 which outlined the design and operation of a standardized measurement system for measuring non-volatile particulate matter (nvPM) mass and number emissions from commercial aircraft engines. Prior to this research, evaluation of this system by various investigators revealed differences in nvPM mass emissions measurement on the order of 15-30% both within a single sampling system and between two systems operating in parallel and measuring nvPM mass emissions from the same source. To investigate this issue, the U. S. Environmental Protection Agency in collaboration with the U. S. Air Force's Arnold Engineering Development Complex initiated the VAriable Response In Aircraft nvPM Testing (VARIAnT) research program to compare nvPM measurements within and between AIR-compliant sampling systems used for measuring combustion aerosols generated both by a 5201 Mini-CAST soot generator and a J85-GE-5 turbojet engine burning multiple fuels. The VARIAnT research program has conducted four test campaigns to date. The first campaign (VARIAnT 1) compared two essentially identical commercial versions of the sampling system while the second campaign (VARIAnT 2) compared a commercial system to the custom-designed Missouri University of Science and Technology's North American Reference System (NARS) built to the same specifications. Comparisons of nvPM particle mass (i.e., black carbon), number, and size were conducted in both campaigns. Additionally, the sensitivity to variation in system operational parameters was evaluated in VARIAnT 1. Results from both campaigns revealed agreement of about 12% between the two sampling systems, irrespective of manufacturer, in all aspects except for black carbon determination. The major source of measurement differences (20-70%) was due to low BC mass measurements made by the Artium Technologies LII-300 as compared to the AVL 483 Micro-Soot Sensor, the Aerodyne Cavity Attenuated Phase Shift (CAPS PMSSA) monitor, and the thermal-optical reference method for elemental carbon (EC) determination, which was used as the BC reference.

3.
Am J Physiol Cell Physiol ; 319(5): C885-C894, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877217

RESUMO

Tendon is a dense connective tissue that stores and transmits forces between muscles and bones. Cellular heterogeneity is increasingly recognized as an important factor in the biological basis of tissue homeostasis and disease, yet little is known about the diversity of cell types that populate tendon. To address this, we determined the heterogeneity of cell populations within mouse Achilles tendons using single-cell RNA sequencing. In assembling a transcriptomic atlas of Achilles tendons, we identified 11 distinct types of cells, including three previously undescribed populations of tendon fibroblasts. Prior studies have indicated that pericytes, which are found in the vasculature of tendons, could serve as a potential source of progenitor cells for adult tendon fibroblasts. Using trajectory inference analysis, we provide additional support for the notion that pericytes are likely to be at least one of the progenitor cell populations for the fibroblasts that compose adult tendons. We also modeled cell-cell interactions and identified previously undescribed ligand-receptor signaling interactions involved in tendon homeostasis. Our novel and interactive tendon atlas highlights previously underappreciated heterogeneity between and within tendon cell populations. The atlas also serves as a resource to further the understanding of tendon extracellular matrix assembly and maintenance and in the design of therapies for tendinopathies.


Assuntos
Tendão do Calcâneo/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Pericitos/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Tendão do Calcâneo/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Comunicação Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Colágeno/genética , Colágeno/metabolismo , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Pericitos/citologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células-Tronco/citologia
4.
J Physiol ; 598(8): 1537-1550, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083717

RESUMO

KEY POINTS: Tendon is a hypocellular, matrix-rich tissue that has been excluded from comparative transcriptional atlases. These atlases have provided important knowledge about biological heterogeneity between tissues, and our study addresses this important gap. We performed measures on four of the most studied tendons, the Achilles, forepaw flexor, patellar and supraspinatus tendons of both mice and rats. These tendons are functionally distinct and are also among the most commonly injured, and therefore of important translational interest. Approximately one-third of the filtered transcriptome was differentially regulated between Achilles, forepaw flexor, patellar and supraspinatus tendons within either mice or rats. Nearly two-thirds of the transcripts that are expressed in anatomically similar tendons were different between mice and rats. The overall findings from this study identified that although tendons across the body share a common anatomical definition based on their physical location between skeletal muscle and bone, tendon is a surprisingly genetically heterogeneous tissue. ABSTRACT: Tendon is a functionally important connective tissue that transmits force between skeletal muscle and bone. Previous studies have evaluated the architectural designs and mechanical properties of different tendons throughout the body. However, less is known about the underlying transcriptional differences between tendons that may dictate their designs and properties. Therefore, our objective was to develop a comprehensive atlas of the transcriptome of limb tendons in adult mice and rats using systems biology techniques. We selected the Achilles, forepaw digit flexor, patellar, and supraspinatus tendons due to their divergent functions and high rates of injury and tendinopathies in patients. Using RNA sequencing data, we generated the Comparative Tendon Transcriptional Database (CTTDb) that identified substantial diversity in the transcriptomes of tendons both within and across species. Approximately 30% of filtered transcripts were differentially regulated between tendons of a given species, and nearly 60% of the filtered transcripts present in anatomically similar tendons were different between species. Many of the genes that differed between tendons and across species are important in tissue specification and limb morphogenesis, tendon cell biology and tenogenesis, growth factor signalling, and production and maintenance of the extracellular matrix. This study indicates that tendon is a surprisingly heterogenous tissue with substantial genetic variation based on anatomical location and species.


Assuntos
Tendão do Calcâneo , Tendinopatia , Animais , Matriz Extracelular , Humanos , Camundongos , Ratos , Análise de Sequência de RNA , Transcriptoma
5.
Exp Dermatol ; 28(4): 345-349, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30033638

RESUMO

The uppermost aspect of the hair follicle, known as the infundibulum or hair canal, provides a passageway for hair shaft egress and sebum secretion. Recent studies have indicated that the infundibulum and sebaceous ducts are lined by molecularly distinct differentiated cells expressing markers including Keratin 79 and Gata6. Here, we ablated Gata6 from the skin and observed dilation of both the hair canal and sebaceous ducts, independent of gender and hair cycle stage. Constitutive loss of Gata6 yielded only a mild delay in depilation-induced entry into anagen, while unperturbed mutant mice possessed overtly normal skin and hair. Furthermore, we noted that Keratin 79 and Gata6 expression and localization did not depend upon each other. Our findings implicate Gata6 in maintaining the upper hair follicle and suggest that regulation of this transcription factor may be compromised in pathologies such as acne or infundibular cystic diseases that are characterized by abnormal expansion of this follicular domain.


Assuntos
Fator de Transcrição GATA6/genética , Folículo Piloso/patologia , Glândulas Sebáceas/patologia , Animais , Núcleo Celular/metabolismo , Dilatação Patológica/genética , Feminino , Fator de Transcrição GATA6/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Queratinas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regeneração/genética , Glândulas Sebáceas/metabolismo
6.
Environ Sci Technol ; 50(4): 2018-26, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26757000

RESUMO

Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.


Assuntos
Gasolina , Veículos Automotores , Gás Natural , Emissões de Veículos/análise , Dióxido de Carbono/análise , Metano/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise
7.
Blood ; 122(18): 3230-7, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24046012

RESUMO

Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5'-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation. Alloreactive T cells increased FA transport, elevated levels of FA oxidation enzymes, up-regulated transcriptional coactivators to drive oxidative metabolism, and increased their rates of FA oxidation. Importantly, increases in FA transport and up-regulation of FA oxidation machinery occurred specifically in T cells during GVHD and were not seen in Teff following acute activation. Pharmacological blockade of FA oxidation decreased the survival of alloreactive T cells but did not influence the survival of T cells during normal immune reconstitution. These studies suggest that pathways controlling FA metabolism might serve as therapeutic targets to treat GVHD and other T-cell-mediated immune diseases.


Assuntos
Ácidos Graxos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Western Blotting , Transplante de Medula Óssea/métodos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/imunologia , Carnitina O-Palmitoiltransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Feminino , Citometria de Fluxo , Doença Enxerto-Hospedeiro/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Transplante Homólogo
8.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38562693

RESUMO

The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.

9.
Environ Sci Technol ; 47(9): 4521-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23550802

RESUMO

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.


Assuntos
Filtração/métodos , Óxidos de Nitrogênio/química , Aerossóis , Catálise , Oxirredução , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Environ Pollut ; 333: 121996, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336347

RESUMO

Buildings are often located near ambient air pollution sources such as wildfire or heavy traffic areas. While windows in buildings are intermittently open for free cooling or natural ventilation, increased leakage area can lead to elevated human exposure to air pollutants of outdoor origin. The objective of this study is to investigate the effectiveness of paper filter windows in reducing exposure to outdoor air pollution and improving indoor air quality. The physical properties of paper windows as filtration media were experimentally determined, based on which multi-zone indoor air quality and ventilation analysis (CONTAM) simulations were performed for a full-scale building. The results show that the outdoor-indoor air exchange rate of a building can increase about 100% when conventional windows are replaced with paper filter windows. Even with the increased air exchange rate, the infiltration of outdoor particles into the building was reduced about 57-77% for the particle size range of 7-300 nm. These findings imply that paper windows have potential benefits for controlling both outdoor originated pollutants and indoor-generated pollutants with minimal energy inputs, especially in cities and communities impacted by urban air pollution and wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Material Particulado/análise
11.
Environ Sci Technol ; 46(11): 6127-33, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22568856

RESUMO

Gravimetric analysis is the regulatory method for diesel particulate mass measurement. Because of issues such as adsorption/volatilization artifacts, it faces obstacles in measuring ultra low level emissions from modern diesel engines. Alternative methods of suspended particle mass measurement have been developed that show improvements in time resolution, sensitivity, and accuracy. Three size-resolved methods were considered here. Two methods rely on converting number size distributions obtained using a scanning mobility particle sizer (SMPS). Conversion techniques were based on effective density measurements and the Lall-Friedlander aggregate model. The third method employs the Universal Nanoparticle Analyzer (UNPA) to measure the aggregate size distribution from which mass is calculated. Results were compared with mass concentrations obtained using gravimetric analysis. The effective density conversion resulted in mass concentrations that were highly correlated (R(2) >0.99) with filter mass. The ratios to filter mass concentration were found to be 0.99 ± 0.04, 0.45 ± 0.03, and 0.45 ± 0.19 for the effective density conversion, the Lall-Friedlander conversion, and the UNPA, respectively, for a wide range of engine operating conditions. In addition, the diesel aerosol mass distributions measured by the online techniques are in agreement to within 15-20% with respect to the mass median diameter, while discrepancies were observed in the mass concentration.


Assuntos
Monitoramento Ambiental/métodos , Gasolina/análise , Sistemas On-Line , Material Particulado/análise , Adsorção , Artefatos , Catálise , Filtração , Microscopia Eletrônica de Transmissão , Peso Molecular , Tamanho da Partícula , Fuligem/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-36429940

RESUMO

The concentration of air pollutants in underground parking garages has been found to be higher compared to ambient air. Vehicle emissions from cold starts are the main sources of air pollution in underground parking garages. Eight days of measurements, using low-cost air sensors, were conducted at one underground parking garage at the University of Minnesota, Minneapolis. The CO, NO, NO2, and PM2.5 daily average concentrations in the parking garage were measured to be higher, by up to more than an order of magnitude, compared to the ambient concentration. There is positive correlation between exit traffic flow and the air concentrations in the parking garage for lung deposited surface area (LDSA), CO2, NO, and CO. Fuel specific emission factors were calculated for CO, NO, and NOx. Ranging from 25 to 28 g/kgfuel for CO, from 1.3 to 1.7 g/kgfuel for NO, and from 2.1 to 2.7 g/kgfuel for NOx. Regulated emissions were also calculated for CO and NOx with values of 2.4 to 2.9 and 0.19 to 0.25 g/mile, respectively. These emissions are about 50% higher than the 2017 U.S. emission standards for CO and nearly an order magnitude higher for NOx.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Poluição do Ar/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise
13.
Am J Audiol ; 31(3): 819-834, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917460

RESUMO

PURPOSE: This review article reviews the contemporary studies of localization ability for different populations in different listening environments and provides possible future research directions. CONCLUSIONS: The ability to accurately localize a sound source relying on three cues (interaural time difference, interaural level difference, and spectral cues) is important for communication, learning, and safety. Confounding effects including noise and reverberation, which exist in common listening environments, mask or alter localization cues and negatively affect localization performance. Hearing loss, a common public health issue, also affects localization accuracy. Although hearing devices have been developed to provide excellent audibility of speech signals, less attention has been paid to preserving and replicating crucial localization cues. Unique challenges are faced by users of various hearing devices, including hearing aids, bone-anchored hearing instruments, and cochlear implants. Hearing aids have failed to consistently improve localization performance and, in some cases, significantly impair sound localization. Bone-conduction hearing instruments show little to no benefit for sound localization performance in most cases, although some improvement is seen in binaural users. Although cochlear implants provide great hearing benefit to individuals with severe-to-profound sensorineural hearing loss, cochlear implant users have significant difficulty localizing sound, even with two implants. However, technologies in each of these areas are advancing to reduce interference with desired sound signals and preserve localization cues to help users achieve better hearing and sound localization in real-life environments.


Assuntos
Implante Coclear , Implantes Cocleares , Auxiliares de Audição , Localização de Som , Percepção da Fala , Audição , Humanos
14.
Environ Pollut ; 286: 117320, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991739

RESUMO

Hybrid electric vehicle (HEV) technology is critical to reduce the impact of the internal combustion engines on air pollution and greenhouse gases. HEVs have an advantage in market penetration due to their lower cost and higher driving range compared to battery electric vehicles (BEVs). On the other hand, HEVs use an internal combustion engine and still emit air pollutants. It is hypothesized that HEV performance is impacted by the weather conditions as a result of many factors. It was beyond the scope of this work to systematically evaluate all factors so instead we measured emissions from two vehicles driving city and highway routes in Minneapolis, Minnesota in the winter (-5 °C) and looked for major differences in emissions relative to each vehicle and relative to results that would be obtained from a chassis dynamometer in a controlled laboratory setting at a higher temperature approximately 20 °C). The study then looked to associate differences in emissions with the prevailing conditions to gain new insights. Emissions of interest included the total particle number (TPN), solid particle number (SPN), particulate matter mass (PM), and NOx. One key difference in vehicle engine technology was PFI (port fuel injection) versus GDI (gasoline direct injection). We found the frequency at which the Prius hybrid engine reignited was much higher than the Sonata for city and highway driving, although for both vehicles the catalyst temperature remained high and appeared to be unaffected by the reignitions, despite the cold weather. For most conditions, the Prius emitted more NOx but fewer particles than the Sonata. In some cases, NOx and particle emissions exceeded the most comparable laboratory-based emissions standards.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Temperatura Baixa , Gasolina/análise , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
15.
J Air Waste Manag Assoc ; 60(10): 1177-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21090547

RESUMO

This paper is part of the Journal of the Air & Waste Management Association's 2010 special issue on combustion aerosol measurements. The issue is a combination of papers that synthesize and evaluate ideas and perspectives that were presented by experts at a series of workshops sponsored by the Coordinating Research Council that aimed to evaluate the current and future status of diesel particulate matter (DPM) measurement. Measurement of DPM is a complex issue with many stakeholders, including air quality management and enforcement agencies, engine manufacturers, health experts, and climatologists. Adoption of the U.S. Environmental Protection Agency 2007 heavy-duty engine DPM standards posed a unique challenge to engine manufacturers. The new standards reduced DPM emissions to the point that improvements to the gravimetric method were required to increase the accuracy and the sensitivity of the measurement. Despite these improvements, the method still has shortcomings. The objectives of this paper are to review the physical and chemical properties of DPM that make gravimetric measurement difficult at very low concentrations and to review alternative metrics and methods that are potentially more accurate, sensitive, and specific. Particle volatility, size, surface area, and number metrics are considered, as well as methods to quantify them. Although the authors believe that an alternative method is required to meet the needs of engine manufacturers, the methods reviewed in the paper are applicable to other areas where the gravimetric method detection limit is approached and greater accuracy and sensitivity are required. The paper concludes by suggesting a method to measure active surface area, combined with a method to separate semi-volatile and solid fractions to further increase the specificity of the measurement, has potential for reducing the lower detection limit of DPM and enabling engine manufacturers to reduce DPM emissions in the future.


Assuntos
Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Difusão , Monitoramento Ambiental/legislação & jurisprudência , Tamanho da Partícula , Material Particulado/análise , Estados Unidos , United States Environmental Protection Agency , Emissões de Veículos/legislação & jurisprudência , Volatilização
16.
J Appl Physiol (1985) ; 128(3): 473-482, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944888

RESUMO

Tendon injuries are a common clinical condition with limited treatment options. The cellular components of the innate immune system, such as neutrophils and macrophages, have been studied in tendon injuries. However, the adaptive immune system, comprising specialized lymphocytes, plays an important role in orchestrating the healing of numerous tissues, but less is known about these cells in tendon healing. To gain a greater understanding of the biological processes that regulate tendon healing, we determined how the cellular components of the adaptive and innate immune system respond to a tendon injury using two-month-old male mice. We observed that lymphatic vasculature is present in the epitenon and superficial regions of Achilles tendons, and that the lymphatics drain into the popliteal lymph node. We then created an acute Achilles tenotomy followed by repair, and collected tendons and popliteal lymph nodes 1, 2, and 4 wk after injury. Tendon injury resulted in a robust adaptive immune cell response that followed an initial innate immune cell response in tendons and lymph nodes. Monocytes, neutrophils, and macrophages initially accumulated at 1 wk after injury in tendons, while dendritic cells and CD4+ T cells peaked at 2 wk after injury. B cells and CD8+ T cells progressively increased over time. In parallel, immune cells of the popliteal lymph node demonstrated a similarly coordinated response to the injury. These results suggest that there is an adaptive immune response to tendon injury, and adaptive immune cells may play a role in regulating tendon healing.NEW & NOTEWORTHY While the innate immune system, consisting of macrophages and related hematopoietic cells, has been studied in tendon injury, less is known about the adaptive immune system. Using a mouse model of Achilles tendon tenotomy and repair, we observed an adaptive immune cell response, consisting of CD4+ and CD8+ T cells, and B cells, which occur through 4 wk after tendon injury. This response appeared to be coordinated by the draining popliteal lymph node.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Linfócitos T CD8-Positivos , Humanos , Imunidade Inata , Linfonodos , Masculino
17.
J Orthop Res ; 38(4): 811-822, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31696955

RESUMO

Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.


Assuntos
Camundongos Endogâmicos , Atrofia Muscular/etiologia , Lesões do Manguito Rotador/complicações , Manguito Rotador/metabolismo , Transcriptoma , Animais , Masculino , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia
18.
Energy Fuels ; 34(4): 4958-4966, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32327881

RESUMO

Presented here is an overview of non-volatile particulate matter (nvPM) emissions, i.e. "soot" as assessed by TEM analyses of samples collected after the exhaust of a J-85 turbojet fueled with Jet-A as well as with blends of Jet-A and Camelina biofuel. A unifying explanation is provided to illustrate the combustion dynamics of biofuel and Jet-A fuel. The variation of primary particle size, aggregate size and nanostructure are analyzed as a function of biofuel blend across a range of engine thrust levels. The postulate is based on where fuels start along the soot formation pathway. Increasing biofuel content lowers aromatic concentration while placing increasing dependence upon fuel pyrolysis reactions to form the requisite concentration of aromatics for particle inception and growth. The required "kinetic" time for pyrolysis reactions to produce benzene and multi-ring PAHs allows increased fuel-air mixing by turbulence, diluting the fuel-rich soot-forming regions, effectively lowering their equivalence ratio. With a lower precursor concentration, particle inception is slowed, the resulting concentration of primary particles is lowered and smaller aggregates were measured. The lower equivalence ratio also results in smaller primary particles because of the lower concentration of growth species.

19.
Physiol Rep ; 7(22): e14289, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782241

RESUMO

Injured tendons heal through the formation of a fibrovascular scar that has inferior mechanical properties compared to native tendon tissue. Reducing inflammation that occurs as a result of the injury could limit scar formation and improve functional recovery of tendons. Prostaglandin D2 (PGD2 ) plays an important role in promoting inflammation in some injury responses and chronic disease processes, and the inhibition of PGD2 has improved healing and reduced disease burden in animal models and early clinical trials. Based on these findings, we sought to determine the role of PGD2 signaling in the healing of injured tendon tissue. We tested the hypothesis that a potent and specific inhibitor of hematopoietic PGD synthase (HPGDS), GSK2894631A, would improve the recovery of tendons of adult male rats following an acute tenotomy and repair. To test this hypothesis, we performed a full-thickness plantaris tendon tenotomy followed by immediate repair and treated rats twice daily with either 0, 2, or 6 mg/kg of GSK2894631A. Tendons were collected either 7 or 21 days after surgical repair, and mechanical properties of tendons were assessed along with RNA sequencing and histology. While there were some differences in gene expression across groups, the targeted inhibition of HPGDS did not impact the functional repair of tendons after injury, as HPGDS expression was surprisingly low in injured tendons. These results indicate that PGD2 signaling does not appear to be important in modulating the repair of injured tendon tissue.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Prostaglandina D2/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Tendão do Calcâneo/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Inibidores Enzimáticos/farmacologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/lesões , Membro Posterior/metabolismo , Masculino , Prostaglandina D2/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismos dos Tendões/metabolismo
20.
Nanomaterials (Basel) ; 8(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522448

RESUMO

The brain is the central regulator for integration and control of responses to environmental cues. Previous studies suggest that air pollution may directly impact brain health by triggering the onset of chronic neuroinflammation. We hypothesize that nanoparticle components of combustion-generated air pollution may underlie these effects. To test this association, a microglial in vitro biological sensor model was used for testing neuroinflammatory response caused by low-dose nanoparticle exposure. The model was first validated using 20 nm silver nanoparticles (AgNP). Next, neuroinflammatory response was tested after exposure to size-selected 20 nm combustion-generated nanoparticles (CGNP) collected from a modern diesel engine. We show that low concentrations of CGNPs promote low-grade inflammatory response indicated by increased pro-inflammatory cytokine release (tumor necrosis factor-α), similar to that observed after AgNP exposure. We also demonstrate increased production of reactive oxygen species and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation in microglia after CGNP stimulation. Finally, we show conditioned media from CGNP-stimulated microglia significantly reduced hypothalamic neuronal survival in vitro. To our knowledge, this data show for the first time that exposure to AgNP and CGNP elicits microglial neuroinflammatory response through the activation of NF-κB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA