RESUMO
Merlins, Falco columbarius, breed throughout temperate and high latitude habitats in Asia, Europe, and North America. Like peregrine falcons, F. peregrinus, merlins underwent population declines during the mid-to-late twentieth century, due to organochlorine-based contamination, and have subsequently recovered, at least in North American populations. To better understand levels of genetic diversity and population structuring in contemporary populations and to assess the impact of the twentieth century decline, we used genomic data archived in public databases and constructed genomic libraries to isolate and characterize a suite of 17 microsatellite markers for use in merlins. We also conducted cross-amplification experiments to determine the markers' utility in peregrine falcons and gyrfalcons, F. rusticolus. These markers provide a valuable addition to marker suites that can be used to determine individual identity and conduct genetic analyses on merlins and congeners.
Assuntos
Ecossistema , Falconiformes/genética , Variação Genética , Repetições de Microssatélites/genética , Alelos , Animais , Ásia , DNA/genética , DNA/isolamento & purificação , Europa (Continente) , Falconiformes/classificação , Genética Populacional/métodos , Biblioteca Genômica , Genótipo , América do Norte , Especificidade da EspécieRESUMO
Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve-Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably indicative of higher-quality habitat), are a priority for continued protection from potential nearby development and disturbance to minimize population-level impacts. Climate change. may affect Arctic peregrines in multiple ways, including through access to more snow-free nest sites and a lengthened breeding season that may increase likelihood of nest success. Our work provides insight into factors affecting a population during and after recovery, and demonstrates how the Dail-Madsen model can be used for any unmarked population with multiple years of abundance data collected through repeated surveys.
Assuntos
Mudança Climática , Ecossistema , Falconiformes/fisiologia , Alaska , Animais , Regiões Árticas , Dinâmica Populacional , Crescimento Demográfico , Fatores de TempoRESUMO
While collating contributions and comments from 36 researchers, the coordinating authors accidentally omitted Dr. Suzanne Carrière from the list of contributing co-authors. Dr. Carrière's data are described in Tables 1 and 3, Figure 2 and several places in the narrative.The new author list is thus updated in this article.
RESUMO
The peregrine falcon (Falco peregrinus) and the gyrfalcon (Falco rusticolus) are top avian predators of Arctic ecosystems. Although existing monitoring efforts are well established for both species, collaboration of activities among Arctic scientists actively involved in research of large falcons in the Nearctic and Palearctic has been poorly coordinated. Here we provide the first overview of Arctic falcon monitoring sites, present trends for long-term occupancy and productivity, and summarize information describing abundance, distribution, phenology, and health of the two species. We summarize data for 24 falcon monitoring sites across the Arctic, and identify gaps in coverage for eastern Russia, the Arctic Archipelago of Canada, and East Greenland. Our results indicate that peregrine falcon and gyrfalcon populations are generally stable, and assuming that these patterns hold beyond the temporal and spatial extents of the monitoring sites, it is reasonable to suggest that breeding populations at broader scales are similarly stable. We have highlighted several challenges that preclude direct comparisons of Focal Ecosystem Components (FEC) attributes among monitoring sites, and we acknowledge that methodological problems cannot be corrected retrospectively, but could be accounted for in future monitoring. Despite these drawbacks, ample opportunity exists to establish a coordinated monitoring program for Arctic-nesting raptor species that supports CBMP goals.
Assuntos
Ecossistema , Falconiformes , Animais , Canadá , Groenlândia , Estudos Retrospectivos , Federação RussaRESUMO
Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons-F. p. tundrius, anatum, and pealei-for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings-a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)-each comprised of discrete populations that are variously intra-regionally connected.