Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 19(14): 13692-9, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747525

RESUMO

We demonstrate multiple bandgap integration on the hybrid silicon platform using quantum well intermixing. A broadband DFB laser array and a DFB-EAM array are realized on a single chip using four bandgaps defined by ion implantation enhanced disordering. The broadband laser array uses two bandgaps with 17 nm blue shift to compensate for gain roll-off while the integrated DFB-EAMs use the as-grown bandgap for optical gain and a 30 nm blue shifted bandgap for modulation. The multi-channel DFB array includes 13 lasers with >90 nm gain-bandwidth. The transponder includes four DFB-EAMs with 14 dB DC extinction at 4 V bias.


Assuntos
Lasers , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
2.
Opt Express ; 16(17): 12478-86, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711484

RESUMO

We present an integration platform based on quantum well intermixing for multi-section hybrid silicon lasers and electroabsorption modulators. As a demonstration of the technology, we have fabricated discrete sampled grating DBR lasers and sampled grating DBR lasers integrated with InGaAsP/InP electroabsorption modulators. The integrated sampled grating DBR laser-modulators use the as-grown III-V bandgap for optical gain, a 50 nm blue shifted bandgap for the electrabosprtion modulators, and an 80 nm blue shifted bandgap for low loss mirrors. Laser continuous wave operation up to 45 ?C is achieved with output power >1.0 mW and threshold current of <50 mA. The modulator bandwidth is >2GHz with 5 dB DC extinction.


Assuntos
Eletrônica/instrumentação , Lasers de Estado Sólido , Refratometria/instrumentação , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento
3.
Opt Express ; 15(10): 6044-52, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546908

RESUMO

We report a waveguide photodetector utilizing a hybrid waveguide structure consisting of AlGaInAs quantum wells bonded to a silicon waveguide. The light in the hybrid waveguide is absorbed by the AlGaInAs quantum wells under reverse bias. The photodetector has a fiber coupled responsivity of 0.31 A/W with an internal quantum efficiency of 90 % over the 1.5 mum wavelength range. This photodetector structure can be integrated with silicon evanescent lasers for power monitors or integrated with silicon evanescent amplifiers for preamplified receivers.

4.
Opt Express ; 15(18): 11466-71, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19547503

RESUMO

We report the first 1310 nm hybrid laser on a silicon substrate. This laser operates continuous wave (C.W.) up to 105 degrees C. The room temperature threshold current of this laser is 30 mA, and the maximum single sided fiber-coupled output power is 5.5 mW.

5.
Opt Express ; 15(23): 15041-6, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19550786

RESUMO

In this work we present both experimental and theoretical thermal analysis of an electrically pumped hybrid silicon evanescent laser. Measurements of an 850 mum long Fabry-Perot structure show an overall characteristic temperature of 51 oC, an above threshold characteristic temperature of 100 oC, and a thermal impedance of 41.8 oC/W. Finite element analysis of the laser structure predicts a thermal impedance of 43.5 oC/W, which is within 5% of the experimental results. Using the overall characteristic temperature, above threshold characteristic temperature, and the measured thermal impedance, the continuous wave output power vs. current from the laser is simulated and is in good agreement with experiment.

6.
Opt Express ; 14(23): 11348-53, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19529552

RESUMO

Detailed wavelength conversion, extinction ratio regeneration, and signal re-amplification experiments are performed using a monolithically integrated, widely tunable photocurrent driven wavelength converter. A -3.5 dB power penalty is observed in bit error rate measurements at 2.5 Gb/s when the extinction ratio of an incoming signal is regenerated from 4 dB to 11 dB, and the input signal wavelength is switched from 1548 nm to an output wavelength range between 1533 nm and 1553 nm. When the input signal extinction ratio is regenerated from 4 to 11 dB, the wavelength converter provides facet to facet conversion gain of 5 dB, 7.7 dB, and 7.6 dB for conversion from 1548 nm to output wavelengths of 1533, 1545 nm, and 1553 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA