Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915485

RESUMO

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-ß is incompletely understood. We and others have shown that TGF-ß-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-ß. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-ß-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.

2.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986788

RESUMO

A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-ß induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-ß-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-ß; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.

3.
MedEdPORTAL ; 17: 11125, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33816788

RESUMO

Introduction: Interprofessional collaboration improves patient outcomes. Many institutions lack access to learners from other health care professions, limiting the feasibility of many published interprofessional curricula. We created a video-based workshop to fill the need for an introductory interactive interprofessional activity for third-year medical students (MS 3) in their internal medicine clerkship, in which other health care students and standardized patients were not readily accessible. Methods: This session introduced medical students to the interprofessional model of care through a video workshop. Learners engaged in reflective observation as a video presented a physician interviewing a patient. The training and roles of interprofessional providers were discussed with the aid of video demonstrations. Learners completed postworkshop and postmedicine clerkship surveys with responses indicated using a Likert scale (1 = strongly disagree, 5 = strongly agree). Results: Sixty-seven MS 3s participated in this workshop; postworkshop survey response rate was 82%. Of students who responded to the surveys, 87% agreed that the video increased their understanding of when it would be beneficial to consult interprofessional team members. Students' confidence in interacting with interprofessional team members improved from a mean of 3.0 before the workshop to 3.7 after the workshop. At the end of the medicine clerkship, 71% indicated that the video improved their ability to work with interprofessional team members at least moderately. Discussion: This video-based workshop improved students' self-rated understanding of interprofessional team members' roles and increased their confidence interacting with other members of the interprofessional health care team.


Assuntos
Educação Interprofissional , Estudantes de Medicina , Idoso , Currículo , Humanos , Relações Interprofissionais , Equipe de Assistência ao Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA