Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 57(9): 5174-5182, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664290

RESUMO

Tetrabenzotriazacorroles (Tbcs) are a family of molecules related to phthalocyanines but have the unique ability to intensely absorb both blue and red light. Here, we report the synthesis of four novel silicon tetrabenzotriazacorrole derivatives (SiTbcs) with varying sized axial ligands. SiTbcs are formed starting from bis(hydroxy) silicon phthalocyanine ((OH)2-SiPc) via a simple in situ axial functionalization and reductive chemical process using magnesium metal and the respective chlorosilane in pyridine. Systematic probing of the reaction conditions revealed that the reaction is acid-promoted and that the formation of the Tbc macrocycle occurs at temperatures as low as 40 °C. Results imply this chemistry can be extended to SiTbcs with any axial ligands using pyridine hydrochloride as an acid source. Single crystals of all compounds were grown and showed significant π-π interactions between the macrocycles in the solid state. Optical, electrochemical, and thermal characterization of these materials is also described. The SiTbcs exhibit interesting highly oxidative electrochemistry as well as high thermal stability and tunable phase transition behavior.

2.
ACS Omega ; 6(41): 26857-26869, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693107

RESUMO

Axial functionalization is one mode that enables the solubility of silicon phthalocyanines (SiPcs). Our group observed that the use of typical axial functionalization methodologies on reaction of Cl2SiPc with the chlorotriphenyl silane reagent unexpectedly resulted in the equal formation of triphenyl silyloxy silicon tetrabenzotriazacorrole ((3PS)-SiTbc) and the desired bis(tri-phenyl siloxy)-silicon phthalocyanine ((3PS)2-SiPc). The formation of a (3PS)-SiTbc was unexpected, and the separation of (3PS)-SiTbc and (3PS)2-SiPc was difficult. Therefore, in this study, we investigated the use of Piers-Rubinsztajn (PR) chemistry as an alternative method to functionalize the axial position of a SiPc to avoid the generation of a Tbc derivative. PR chemistry is a novel method to form a Si-O bond starting with a Si-H-based reactant and a -OH-based nucleophile enabled by tris(pentafluorophenyl)borane as a catalyst. The PR chemistry was screened on several fronts on how it can be applied to SiPcs. It was found that the process needs to be run in nitrobenzene at a molar ratio and at a particular temperature. To this end, the triphenylsiloxy derivative (3PS)2-SiPc was produced and fully characterized, without the production of a Tbc derivative. In addition, we explored and outlined that the PR chemistry method can enable the formation of other SiPc derivatives that are inaccessible utilizing other established axial substitution chemistry methods such as (TM3)2-SiPc and (MDM)2-SiPc. These additional materials were also physically characterized. The main conclusion is that the PR chemistry method can be applied to SiPcs and yield several alternative derivatives and has the potential to apply to additional macrocyclic compounds for unique derivative formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA