Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 216(Pt 6): 970-6, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23447664

RESUMO

Many stony coral-dwelling fishes exhibit adaptations to deal with hypoxia among the branches of their hosts; however, no information exists on the respiratory ecophysiology of obligate fish associates of non-coral organisms such as sea anemones and sponges. This study investigated metabolic and behavioral interactions between two-band anemonefish (Amphiprion bicinctus) and bulb-tentacle sea anemones (Entacmaea quadricolor) at night. We measured the net dark oxygen uptake ( , µmol O2 h(-1)) of fish-anemone pairs when partners were separate from each other, together as a unit, and together as a unit but separated by a mesh screen that prevented physical contact. We also measured the effects of water current on sea anemone and quantified the nocturnal behaviors of fish in the absence and presence of host anemones in order to discern the impacts of anemone presence on fish behavior. Net of united pairs was significantly higher than that of both separated pairs and united pairs that were separated by a mesh screen. Anemone increased with flow rate from 0.5 to 2.0 cm s(-1), after which remained constant up to a water flow rate of 8.0 cm s(-1). Furthermore, the percentage time and bout frequency of flow-modulating behaviors by fish increased significantly when anemones were present. We conclude that physical contact between anemonefish and sea anemones elevates the of at least one of the partners at night, and anemonefish behavior at night appears to oxygenate sea anemone hosts and to augment the metabolism of both partners.


Assuntos
Comportamento Animal/fisiologia , Oxigênio/metabolismo , Perciformes/metabolismo , Anêmonas-do-Mar/metabolismo , Simbiose/fisiologia , Análise de Variância , Animais , Ritmo Circadiano/fisiologia , Oceano Índico , Perciformes/fisiologia , Anêmonas-do-Mar/fisiologia
2.
PeerJ ; 5: e2949, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149703

RESUMO

The trade of live marine animals for home and public aquaria has grown into a major global industry. Millions of marine fishes and invertebrates are removed from coral reefs and associated habitats each year. The majority are imported into the United States, with the remainder sent to Europe, Japan, and a handful of other countries. Despite the recent growth and diversification of the aquarium trade, to date, data collection is not mandatory, and hence comprehensive information on species volume and diversity is lacking. This lack of information makes it impossible to study trade pathways. Without species-specific volume and diversity data, it is unclear how importing and exporting governments can oversee this industry effectively or how sustainability should be encouraged. To expand our knowledge and understanding of the trade, and to effectively communicate this new understanding, we introduce the publically-available Marine Aquarium Biodiversity and Trade Flow online database (https://www.aquariumtradedata.org/). This tool was created to communicate the volume and diversity of marine fishes and/or invertebrates imported into the US over three complete years (2008, 2009, and 2011) and three partial years (2000, 2004, 2005). To create this tool, invoices pertaining to shipments of live marine fishes and invertebrates were scanned and analyzed for species name, species quantities, country of origin, port of entry, and city of import destination. Here we focus on the analysis of the later three years of data and also produce an estimate for the entirety of 2000, 2004, and 2005. The three-year aggregate totals (2008, 2009, 2011) indicate that just under 2,300 fish and 725 invertebrate species were imported into the US cumulatively, although just under 1,800 fish and 550 invertebrate species were traded annually. Overall, the total number of live marine animals decreased between 2008 and 2011. In 2008, 2009, and 2011, the total number of individual fish (8.2, 7.3, and 6.9 million individuals) and invertebrates (4.2, 3.7, and 3.6 million individuals) assessed by analyzing the invoice data are roughly 60% of the total volumes recorded through the Law Enforcement Management Information System (LEMIS) dataset. Using these complete years, we back-calculated the number of individuals of both fishes and invertebrates imported in 2000, 2004, and 2005. These estimates (9.3, 10.8, and 11.2 million individual fish per year) were consistent with the three years of complete data. We also use these data to understand the global trade in two species (Banggai cardinalfish, Pterapogon kauderni, and orange clownfish, Amphiprion ocellaris / percula) recently considered for Endangered Species Act listing. Aquariumtradedata.org can help create more effective management plans for the traded species, and ideally could be implemented at key trade ports to better assess the global trade of aquatic wildlife.

3.
PeerJ ; 5: e3170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413727

RESUMO

The human population is growing and, globally, we must meet the challenge of increased protein needs required to feed this population. Single cell proteins (SCP), when coupled to aquaculture production, offer a means to ensure future protein needs can be met without direct competition with food for people. To demonstrate a given type of SCP has potential as a protein source for use in aquaculture feed, a number of steps need to be validated including demonstrating that the SCP is accepted by the species in question, leads to equivalent survival and growth, does not result in illness or other maladies, is palatable to the consumer, is cost effective to produce and can easily be incorporated into diets using existing technology. Here we examine white shrimp (Litopenaeus vannamei) growth and consumer taste preference, smallmouth grunt (Haemulon chrysargyreum) growth, survival, health and gut microbiota, and Atlantic salmon (Salmo salar) digestibility when fed diets that substitute the bacterium Methylobacterium extorquens at a level of 30% (grunts), 100% (shrimp), or 55% (salmon) of the fishmeal in a compound feed. In each of these tests, animals performed equivalently when fed diets containing M. extorquens as when fed a standard aquaculture diet. This transdisciplinary approach is a first validation of this bacterium as a potential SCP protein substitute in aquafeeds. Given the ease to produce this SCP through an aerobic fermentation process, the broad applicability for use in aquaculture indicates the promise of M. extorquens in leading toward greater food security in the future.

4.
Environ Toxicol Chem ; 30(6): 1447-58, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21381087

RESUMO

In this study, bluefish (Pomatomus saltatrix; age 0-7, n = 632) and their prey (forage fish, macroinvertebrates, zooplankton; n = 2,005) were collected from the Narragansett Bay estuary (RI, USA), and total Hg concentration was measured in white muscle and whole-body tissues, respectively. Bluefish Hg concentrations were analyzed relative to fish length, prey Hg content, and ontogenetic shifts in habitat use and foraging ecology, the latter assessed using stomach content analysis (n = 711) and stable nitrogen (δ(15)N) and carbon (δ(13)C) isotope measurements (n = 360). Diet and δ(13)C analysis showed that age 0 bluefish consumed both benthic and pelagic prey (silversides, sand shrimp, planktonic crustaceans; δ(13)C = - 16.52‰), whereas age 1 + bluefish fed almost exclusively on pelagic forage fish (Atlantic menhaden, herring; δ(13)C = - 17.33‰). Bluefish total Hg concentrations were significantly correlated with length (mean Hg = 0.041 and 0.254 ppm wet wt for age 0 and age 1 + bluefish, respectively). Furthermore, Hg biomagnification rates were maximal during bluefish early life stages and decelerated over time, resulting in relatively high Hg concentrations in age 0 fish. Rapid Hg accumulation in age 0 bluefish is attributed to these individuals occupying a comparable trophic level to age 1 + bluefish (δ(15)N = 15.58 and 16.09‰; trophic level = 3.55 and 3.71 for age 0 and age 1 + bluefish, respectively), as well as juveniles having greater standardized consumption rates of Hg-contaminated prey. Finally, bluefish larger than 30 cm total length consistently had Hg levels above the U.S. Environmental Protection Agency criterion of 0.3 ppm. As such, frequent consumption of bluefish could pose a human health risk, and preferentially consuming smaller bluefish may be an inadequate strategy for minimizing human dietary exposure to Hg.


Assuntos
Mercúrio/metabolismo , Perciformes/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biota , Dieta/estatística & dados numéricos , Ecologia , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Músculos/metabolismo , Rhode Island , Água do Mar/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Zooplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA