Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892078

RESUMO

The aim of this work was to develop and characterize a thin films composed of hyaluronic acid/ellagic acid for potential medical application. Its principal novelty, distinct from the prior literature in terms of hyaluronic acid films supplemented with phenolic acids, resides in the predominant incorporation of ellagic acid-a distinguished compound-as the primary constituent of the films. Herein, ellagic acid was dissolved in two different solvents, i.e., acetic acid (AcOH) or sodium hydroxide (NaOH), and the surface properties of the resultant films were assessed using atomic force microscopy and contact angle measurements. Additionally, various physicochemical parameters were evaluated including moisture content, antioxidant activity, and release of ellagic acid in phosphate buffered saline. Furthermore, the evaluation of films' biocompatibility was conducted using human epidermal keratinocytes, dermal fibroblasts, and human amelanotic melanoma cells (A375 and G361), and the antimicrobial activity was elucidated accordingly against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Our results showed that the films exhibited prominent antibacterial properties particularly against Staphylococcus aureus, with the 80HA/20EA/AcOH film indicating the strong biocidal activity against this strain leading to a significant reduction in viable cells. Comparatively, the 50HA/50EA/AcOH film also displayed biocidal activity against Staphylococcus aureus. This experimental approach could be a promising technique for future applications in regenerative dermatology or novel strategies in terms of bioengineering.


Assuntos
Materiais Biocompatíveis , Ácido Elágico , Ácido Hialurônico , Staphylococcus aureus , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Propriedades de Superfície
2.
Biol Sport ; 41(1): 279-286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188103

RESUMO

Testosterone (T) has been conceptualized as a biomarker of individual differences, yet T associations with the Big Five personality traits are inconsistent. Athletes provide a suitable model for evaluation here, as T co-expresses traits related to male-to-male competition and fitness with cortisol (C) playing a moderating role. This study investigated associations between the Big Five traits, T, and C in adolescent male athletes. One hundred and twenty male ice hockey players (aged 14-19 years) were assessed for blood total (T, C) and free (FT, FC) hormones, body-size dimensions (i.e., body mass, height, body mass index [BMI]), the Big Five personality traits (i.e., extraversion, neuroticism, agreeableness, conscientiousness, openness), and trait anxiety. Correlational and regression (with age and BMI as covariates) analyses identified a positive effect of FT on extraversion, but a negative FT effect on neuroticism and anxiety (p < 0.05). Significant FT × FC interactions emerged for extraversion and agreeableness. Slope testing revealed that FT had a positive effect on extraversion at the FC mean and +1 SD, and a negative effect on agreeableness with FC at +1 SD. In conclusion, adolescent male athletes with a higher serum FT concentration tended to express higher extraversion, but lower neuroticism and anxiety. The FT association with extraversion was moderated by FC concentration, as was agreeableness. Therefore, high-FT athletes presented a behavioural disposition that favours dominance and resiliency, with some dependencies on FC availability. Since all association effect sizes were weak, replicate studies on larger adolescent samples are needed.

3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834986

RESUMO

Graphene is a promising material that may be potentially used in biomedical applications, mainly for drug delivery applications. In our study, we propose an inexpensive 3D graphene preparation method by wet chemical exfoliation. The morphology of the graphene was studied by SEM and HRTEM. Moreover, the volumetric elemental composition (C, N, and H) of the materials was analyzed, and Raman spectra of prepared graphene samples were obtained. X-ray photoelectron spectroscopy, relevant isotherms, and specific surface area were measured. Survey spectra and micropore volume calculations were made. In addition, the antioxidant activity and hemolysis rate in contact with blood were determined. Activity against free radicals of graphene samples before and after thermal modification was tested using the DPPH method. The RSA of the material increased after graphene modification, which suggests that antioxidant properties were improved. All tested graphene samples caused hemolysis in the range of 0.28-0.64%. The results showed that all tested 3D graphene samples might be classified as nonhemolytic.


Assuntos
Grafite , Humanos , Grafite/química , Hemólise , Espectroscopia Fotoeletrônica , Microscopia Eletrônica de Transmissão
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208782

RESUMO

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Hidroxibenzoatos/química , Raios Ultravioleta , Aderência Bacteriana/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073402

RESUMO

The development of scaffolds mimicking the extracellular matrix containing bioactive substances has great potential in tissue engineering and wound healing applications. This study investigates melatonin-a methoxyindole present in almost all biological systems. Melatonin is a bioregulator in terms of its potential clinical importance for future therapies of cutaneous diseases. Mammalian skin is not only a prominent melatonin target, but also produces and rapidly metabolizes the multifunctional methoxyindole to biologically active metabolites. In our methodology, chitosan/collagen (CTS/Coll)-contained biomaterials are blended with melatonin at different doses to fabricate biomimetic hybrid scaffolds. We use rat tail tendon- and Salmo salar fish skin-derived collagens to assess biophysical and cellular properties by (i) Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), (ii) thermogravimetric analysis (TG), (iii) scanning electron microscope (SEM), and (iv) proliferation ratio of cutaneous cells in vitro. Our results indicate that melatonin itself does not negatively affect biophysical properties of melatonin-immobilized hybrid scaffolds, but it induces a pronounced elevation of cell viability within human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), and reference melanoma cells. These results demonstrate that this indoleamine accelerates re-epithelialization. This delivery is a promising technique for additional explorations in future dermatotherapy and protective skin medicine.


Assuntos
Bandagens , Quitosana/química , Colágeno/química , Derme/metabolismo , Epiderme/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Melatonina , Linhagem Celular , Derme/patologia , Avaliação Pré-Clínica de Medicamentos , Epiderme/patologia , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Melatonina/química , Melatonina/farmacocinética , Melatonina/farmacologia
6.
J Strength Cond Res ; 32(10): 2776-2782, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28195972

RESUMO

Orysiak, J, Mazur-Rózycka, J, Busko, K, Gajewski, J, Szczepanska, B, and Malczewska-Lenczowska, J. Individual and combined influence of ACE and ACTN3 genes on muscle phenotypes in polish athletes. J Strength Cond Res 32(10): 2776-2782, 2018-The aim of this study was to examine the association between angiotensin-converting enzyme (ACE) and α-actinin-3 (ACTN3) genes, independently or in combination, and muscle strength and power in male and female athletes. The study involved 398 young male (n = 266) and female (n = 132) athletes representing various sport disciplines (ice hockey, canoeing, swimming, and volleyball). All were Caucasians. The following measurements were taken: height of jump and mechanical power in countermovement jump (CMJ) and spike jump (SPJ), and muscle strength of 10 muscle groups (flexors and extensors of the elbow, shoulder, hip, knee, and trunk). The insertion-deletion (I/D) polymorphism of ACE and the R577X polymorphism of ACTN3 were typed using polymerase chain reaction (PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), respectively. The genotype distribution of the ACE and ACTN3 genes did not differ significantly between groups of athletes for either sex. There was no association between ACE and ACTN3 genotypes (alone or in combination) and sum of muscle strength, height of jump or mechanical power in both jump tests (CMJ and SPJ) for male and female athletes. These findings do not support an influential role of the ACE and ACTN3 genes in determining power/strength performance of elite athletes.


Assuntos
Actinina/genética , Força Muscular , Peptidil Dipeptidase A/genética , Adolescente , Atletas , Estudos Transversais , Feminino , Genótipo , Humanos , Mutação INDEL , Masculino , Fenótipo , Polônia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , População Branca
7.
J Strength Cond Res ; 30(12): 3512-3519, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27050243

RESUMO

Malczewska-Lenczowska, J, Orysiak, J, Majorczyk, E, Zdanowicz, R, Szczepanska, B, Starczewski, M, Kaczmarski, J, Dybek, T, Pokrywka, A, Ahmetov, II, and Sitkowski, D. Total hemoglobin mass, aerobic capacity, and the HBB gene in polish road cyclists. J Strength Cond Res 30(12): 3512-3519, 2016-The relationship between genes, amount of hemoglobin, and physical performance are still not clearly defined. The aim of this study was to examine the association between-551C/T and intron 2, +16 C/G polymorphisms in the beta hemoglobin (HBB) gene and total hemoglobin mass (tHbmass) and aerobic capacity in endurance athletes. Total hemoglobin mass and aerobic capacity indices, i.e.,V[Combining Dot Above]O2max, oxygen uptake at anaerobic threshold (V[Combining Dot Above]O2AT), maximal power output (Pmax), and power at anaerobic threshold (PAT) were determined in 89 young road cyclists, female (n = 39) and male (n = 50), who were genotyped for 2 polymorphisms in the HBB gene. The relative values of aerobic capacity indices differed significantly among intron 2, +16 C/G polymorphisms of the HBB gene only in female cyclists; athletes with GG genotype had significantly higher values of V[Combining Dot Above]O2max (p = 0.003), V[Combining Dot Above]O2AT (p = 0.007), PAT (p = 0.015), and Pmax (p = 0.004) than C carriers. No relationships were found between the C-carrier model (CC + CG vs. GG in the case of intron 2, +16 C/G and CC + CT vs. TT for -551 C/T polymorphisms of the HBB gene) and relative values of tHbmass. Our results demonstrated that the HBB gene could be related to aerobic capacity, but it seems that it does not result from an increase in the amount of hemoglobin in the blood.


Assuntos
Atletas , Hemoglobinas/análise , Hemoglobinas/genética , Consumo de Oxigênio/genética , Resistência Física/genética , Polimorfismo Genético , Adolescente , Adulto , Limiar Anaeróbio/fisiologia , Feminino , Genótipo , Humanos , Íntrons , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Polônia , Adulto Jovem
8.
Rocz Panstw Zakl Hig ; 67(1): 59-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26953583

RESUMO

BACKGROUND: Insufficient intake of vitamins and minerals, in teenagers engaged in physical activity increases the risk of health disorders. OBJECTIVE: The aim of this study was to evaluate selected vitamins and minerals intake in 13-15-year-old boys from sport school. MATERIAL AND METHODS: The study of dietary intake was conducted among 44 boys from the School of Sport Championship (SSC). Nutritional data was collected using 24-hour recall for 3 days of week. Daily intake of minerals: sodium, potassium, calcium, phosphorus, magnesium, iron, zinc, copper, iodine and vitamins: A, E, D, B1, B2, B6, B12, C, folate and niacin was estimated. The probability of insufficient intake of nutrients in relation to the standard levels: Estimated Average Requirement (EAR) or Adequate Intake (AI) as well as excessive intake of them in relation to the Tolerable Upper Intake Level (UL) were assessed. RESULTS: The highest percentage of insufficient intake concerned vitamin D (100%), potassium (69%), folate (53%), and calcium (50%), slightly lower of magnesium (27%), vitamins C (24%) and E (15%). The risk of inadequate intake of other minerals: sodium, copper, iron, zinc, phosphorus, iodine and vitamins: B6, B1, B2, A, B12, niacin, was relatively lower and amounted from 0.3% to 5.4%. The disturbingly high probability of exceeding the UL for sodium (99.5%) was observed. CONCLUSIONS: A significant disproportion between the mean intake and the percentage of inadequate diets indicates a large diversity in the intake of vitamins and minerals in the group of studied boys, what was the reason of unbalanced diet. The insufficient intake concerns especially vitamin D, potassium, folate, calcium and a lesser extent magnesium, vitamins C and E. Sodium intake was disturbingly high. In order to avoid nutritional mistakes in the future education on the rational nutrition among students, their parents, and teachers is necessary.


Assuntos
Inquéritos sobre Dietas , Dieta/estatística & dados numéricos , Suplementos Nutricionais/estatística & dados numéricos , Comportamento Alimentar , Minerais , Estudantes/estatística & dados numéricos , Vitaminas , Adolescente , Humanos , Masculino , Estado Nutricional , Esportes
9.
Nutrients ; 16(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257108

RESUMO

Vitamin D, calcium, and iron are micronutrients crucial for bone health. However, their effect has been studied primarily in the cortical bone, with vitamin D status being assessed mainly from the total 25(OH)D serum fraction. The study aimed to investigate the impact of vitamin D (total and free fraction) and iron status (i.e., serum ferritin or soluble transferrin receptor) and calcium intake (ADOS-Ca questionnaire) on lumbar cortical and trabecular bone. In a cohort of 113 male subjects (76 athletes, 37 non-athletes) aged 15-19, the lumbar spine status (Z-score, bone mineral apparent density (BMAD), and trabecular bone score (TBS)) was determined using dual-energy X-ray absorptiometry (DXA). Relationships between the examined micronutrients and bone health parameters were observed only in athletes. Free 25(OH)D was significantly (p < 0.001) correlated with Z-score and BMAD, while total 25(OH)D (p < 0.001) and iron status (ferritin, Fe stores; p < 0.01) correlated solely with BMAD. Free 25(OH)D and ferritin concentrations were the best determinants of bone status (R2 = 0.330; p < 0.001) and explained 25% and 7% of the BMAD variance, respectively. No relationships were found between the micronutrients and TBS. The results confirmed the positive influence of vitamin D and iron on cortical, but not trabecular, bone status solely in physically active subjects. In athletes, free 25(OH)D seems to be a superior indicator of bone health to a total 25(OH)D fraction.


Assuntos
Cálcio da Dieta , Vitamina D , Humanos , Masculino , Densidade Óssea , Cálcio , Ferritinas , Ferro , Micronutrientes , Vitaminas , Adolescente , Adulto Jovem
10.
Int J Biol Macromol ; 254(Pt 3): 128101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972843

RESUMO

In this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated. The irritation effect caused by hyaluronic acid/tannic acid films was also considered with the use of are constructed human epidermis model. The irritation effect for hyaluronic acid/tannic acid films by the in vitro method was also studied. The low surface free energy, surface roughness, and antioxidant activity presented by the obtained films were examined. All the tested compositions of hyaluronic acid/tannic acid films were hemocompatible, but only films based on 50HA/50TA were fully cytocompatible. Regarding the potential implantation, all the films except 80HA/20TA showed appropriate mechanical properties. The specimens did not exert the irritation effect during the studies involving reconstructed human epidermis.


Assuntos
Antioxidantes , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Cicatrização , Permeabilidade
11.
Int J Biol Macromol ; 258(Pt 1): 128870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141705

RESUMO

Tannic acid (TA) is a natural compound studied as the cross-linker for biopolymers due to its ability to form hydrogen bonds. There are different methods to improve its reactivity and effectiveness to be used as a modifier for biopolymeric materials. This work employed plasma to modify tannic acid TA, which was then used as a cross-linker for fabricating collagen/gelatin scaffolds. Plasma treatment did not cause any significant changes in the structure of TA, and the resulting oxidized TA showed a higher antioxidant activity than that without treatment. Adding TA to collagen/gelatin scaffolds improved their mechanical properties and stability. Moreover, the obtained plasma-treated TA-containing scaffolds showed antibacterial properties and were non-hemolytic, with improved cytocompatibility towards human dermal fibroblasts. These results suggest the suitability of plasma treatment as a green technology for the modification of TA towards the development of advanced TA-crosslinked hydrogels for various biomedical applications.


Assuntos
Gelatina , Gases em Plasma , Polifenóis , Humanos , Gelatina/química , Hidrogéis/química , Taninos/química , Colágeno/química , Tecnologia
12.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399862

RESUMO

Bioactive materials may be applied in tissue regeneration, and an example of such materials are wound dressings, which are used to accelerate skin healing, especially after trauma. Here, we proposed a novel dressing enriched by a bioactive component. The aim of our study was to prepare and characterize poly(vinyl alcohol) films modified with strontium titanate nanoparticles. The physicochemical properties of films were studied, such as surface free energy and surface roughness, as well as the mechanical properties of materials. Moreover, different biological studies were carried out, like in vitro hemo- and cyto-compatibility, biocidal activity, and anti-biofilm formation. Also, the degradation of the materials' utilization possibilities and enzymatic activity in compost were checked. The decrease of surface free energy, increase of roughness, and improvement of mechanical strength were found after the addition of nanoparticles. All developed films were cyto-compatible, and did not induce a hemolytic effect on the human erythrocytes. The PVA films containing the highest concentration of STO (20%) reduced the proliferation of Eschericha coli, Pseudomonas aeruginosa, and Staphylococcus aureus significantly. Also, all films were characterized by surface anti-biofilm activity, as they significantly lowered the bacterial biofilm abundance and its dehydrogenase activity. The films were degraded by the compost microorganism. However, PVA with the addition of 20%STO was more difficult to degrade. Based on our results, for wound dressing application, we suggest using bioactive films based on PVA + 20%STO, as they were characterized by high antibacterial properties, favorable physicochemical characteristics, and good biocompatibility with human cells.

13.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475259

RESUMO

Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.

14.
PLoS One ; 18(7): e0287330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37399218

RESUMO

AIM: The trabecular bone score (TBS) is a tool for assessing bone quality and health. Current TBS algorithm corrects for body mass index (BMI), as a proxy of regional tissue thickness. However, this approach fails to consider BMI inaccuracies due to individual differences in body stature, composition and somatotype. This study investigated the relationship between TBS and body size and composition in subjects with a normal BMI, but with large morphological diversity in body fatness and height. METHODS: Young male subjects (n = 97; age 17.2±1.0 years), including ski jumpers (n = 25), volleyball players (n = 48) and non-athletes (controls n = 39), were recruited. The TBS was determined from L1-L4 dual-energy X-ray absorptiometry (DXA) scans using TBSiNsight software. RESULTS: TBS correlated negatively with height and tissue thickness in the L1-L4 area in ski jumpers (r = -0.516 and r = -0.529), volleyball players (r = -0.525 and r = -0.436), and the total group (r = -0.559 and r = -0.463), respectively. Multiple regression analyses revealed that height, L1-L4 soft tissue thickness, fat mass and muscle mass were significant determinants of TBS (R2 = 0.587, p<0.001). L1-L4 soft tissue thickness explained 27% and height 14% of the TBS variance. CONCLUSION: The negative association of TBS and both features suggests that a very low L1-L4 tissue thickness may lead to overestimation of the TBS, while tall stature may have the opposite effect. It seems that the utility of the TBS as a skeletal assessment tool in lean and/or tall young male subjects could be improved if tissues thickness in the lumbar spine area and stature instead of BMI were considered in the algorithm.


Assuntos
Densidade Óssea , Osso Esponjoso , Humanos , Masculino , Adolescente , Osso Esponjoso/diagnóstico por imagem , Densidade Óssea/fisiologia , Absorciometria de Fóton , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Tamanho Corporal
15.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981267

RESUMO

This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.

16.
J Funct Biomater ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504839

RESUMO

Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.

17.
J Funct Biomater ; 14(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36826867

RESUMO

Chitosan-based scaffolds modified by gallic acid, ferulic acid, and tannic acid were fabricated. The aim of the experiment was to compare the compatibility of scaffolds based on chitosan with gallic acid, ferulic acid, or tannic acid using the in vivo method. For this purpose, materials were implanted into rabbits in the middle of the latissimus dorsi muscle length. A scaffold based on unmodified chitosan was implanted by the same method as a control. Moreover, the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) spectra and scanning electron microscope (SEM) observations were made to study the interactions between chitosan and phenolic acids. Additionally, antioxidant properties and blood compatibility were investigated. The results showed that all studied materials were safe and non-toxic. However, chitosan scaffolds modified by gallic acid and tannic acid were resorbed faster and, as a result, tissues were organized faster than those modified by ferulic acid or unmodified.

18.
Membranes (Basel) ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367746

RESUMO

Over the past decade, much attention has been paid to chitosan as a potential drug carrier because of its non-toxicity, biocompatibility, biodegradability and antibacterial properties. The effect of various chitosan characteristics on its ability to carry different antibiotics is discussed in the literature. In this work, we evaluated the influence of the different molecular weights of this polymer on its potential as an antibacterial membrane after adding gentamicin (1% w/w). Three types of chitosan membranes without and with antibiotic were prepared using a solvent casting process. Their microstructures were analyzed with a 4K digital microscope, and their chemical bonds were studied using FTIR spectroscopy. Furthermore, cytocompatibility on human osteoblasts and fibroblasts as well as antibacterial activity against Staphylococcus aureus (S. aureus.) and Escherichia coli (E. coli) were assessed. We observed that the membrane prepared from medium-molecular-weight chitosan exhibited the highest contact angle (≈85°) and roughness (10.96 ± 0.21 µm) values, and its antibacterial activity was unfavorable. The maximum tensile strength and Young's modulus of membranes improved and elongation decreased with an increase in the molecular weight of chitosan. Membranes prepared with high-molecular-weight chitosan possessed the best antibacterial activity, but mainly against S. aureus. For E. coli, is not advisable to add gentamicin to the chitosan membrane, or it is suggested to deplete its content. None of the fabricated membranes exhibited a full cytotoxic effect on osteoblastic and fibroblast cells. Based on our results, the most favorable membrane as a gentamicin carrier was obtained from high-molecular-weight chitosan.

19.
Nanomaterials (Basel) ; 13(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063764

RESUMO

In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis and cytotoxicity, were evaluated. Then, the selected biocompatible nanoparticles were used as the gelatin film modification with 10% concentration. As a result of solvent evaporation, homogeneous thin films were obtained. The surface's properties, mechanical strength, antioxidant activity, and water vapor permeation rate were examined to select the appropriate film for biomedical applications. We found that the addition of graphene nanoplatelets had a significant effect on the properties of materials, improving surface roughness, surface free energy, antioxidant activity, tensile strength, and Young's modulus. For the most favorable candidate for wound dressing applications, we chose a gelatin film containing nanoparticles with a surface area of 500 m2/g.

20.
J Mech Behav Biomed Mater ; 148: 106205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948920

RESUMO

Gelatin-based films modified with sorbitol were produced from gelatin solution or gelatin/starch blends using a simple and low-cost solvent casting method, and subsequently, their physicochemical, mechanical, and biocompatibility properties were characterized. This work focused on developing and optimizing a biopolymeric blend to improve the pure biopolymers' properties for potential biomedical applications such as wound dressing. The films were characterized in terms of morphology and transparency, mechanical, moisture and swelling properties, thermal stability, and degradation potential. Moreover, hemocompatibility, as well as cytocompatibility of prepared films, were examined. The addition of sorbitol contributed to improving mechanical properties, swelling reduction, and increasing biostability over time. The cytocompatibility of obtained films was confirmed in vitro with two different human cell lines, fibroblastic and osteoblastic, and a more favorable cellular response was received for fibroblasts. Further, in hemocompatibility studies, it was found that all films may be classified as non-hemolytic as they did not have a negative effect on the human erythrocytes. The obtained results indicate the great potential of the gelatin/starch blends modified with sorbitol as regenerative biomaterials intended for wound healing applications.


Assuntos
Gelatina , Amido , Humanos , Amido/química , Gelatina/química , Sorbitol/farmacologia , Materiais Biocompatíveis/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA