Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
FASEB J ; 37(11): e23242, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801065

RESUMO

TIAM Rac1-associated GEF 2 short form (TIAM2S) as an oncoprotein alters the immunity of peripheral immune cells to construct an inflammatory tumor microenvironment. However, its role in the activation of microglia, the primary innate immune cells of the brain, and neuroinflammation remains unknown. This study investigated the mechanism underlying TIAM2S shapes immune properties of microglia to facilitate neuron damage. Human microglial clone 3 cell line (HMC3) and human brain samples were applied to determine the presence of TIAM2S in microglia by western blots and double immunostaining. Furthermore, TIAM2S transgenic mice combined with multiple reconstituted primary neuron-glial culture systems and a cytokine array were performed to explore how TIAM2S shaped immune priming of microglia and participated in lipopolysaccharide (LPS)-induced neuron damage. TIAM2S protein was detectable in HMC3 cells and presented in a small portion (~11.1%) of microglia in human brains referred to as TIAM2S-positive microglia. With the property of secreted soluble factor-mediated immune priming, TIAM2S-positive microglia enhanced LPS-induced neuroinflammation and neural damage in vivo and in vitro. The gain- and loss-of-function experiments showed soluble intercellular adhesion molecule-1 (sICAM-1) participated in neurotoxic immune priming of TIAM2S+ microglia. Together, this study demonstrated a novel TIAM2S-positive microglia subpopulation enhances inflammation and neurotoxicity through sICAM-1-mediated immune priming.


Assuntos
Inflamação , Molécula 1 de Adesão Intercelular , Microglia , Microambiente Tumoral , Animais , Humanos , Camundongos , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neuroinflamatórias/imunologia , Microambiente Tumoral/imunologia
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542478

RESUMO

We reported that a 31-amino-acid Zfra protein (zinc finger-like protein that regulates apoptosis) blocks neurodegeneration and cancer growth. Zfra binds WW domain-containing oxidoreductase (WWOX) to both N- and C-termini, which leads to accelerated WWOX degradation. WWOX limits the progression of neurodegeneration such as Alzheimer's disease (AD) by binding tau and tau-hyperphosphorylating enzymes. Similarly, Zfra binds many protein targets and accelerates their degradation independently of ubiquitination. Furthermore, Zfra4-10 peptide strongly prevents the progression of AD-like symptoms in triple-transgenic (3xTg) mice during aging. Zfra4-10 peptide restores memory loss in 9-month-old 3xTg mice by blocking the aggregation of a protein cascade, including TPC6AΔ, TIAF1, and SH3GLB2, by causing aggregation of tau and amyloid ß. Zfra4-10 also suppresses inflammatory NF-κB activation. Zfra-activated Hyal-2+ CD3- CD19- Z cells in the spleen, via Hyal-2/WWOX/Smad4 signaling, are potent in cancer suppression. In this perspective review, we provide mechanistic insights regarding how Zfra overrides WWOX to induce cancer suppression and retard AD progression via Z cells.


Assuntos
Peptídeos beta-Amiloides , Neoplasias , Camundongos , Animais , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Apoptose , Transdução de Sinais/fisiologia , Neoplasias/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638842

RESUMO

Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-ß and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-ß and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-ß receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-ß in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-ß-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.


Assuntos
Dissulfiram/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Temozolomida/farmacologia , Animais , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
4.
Cell Commun Signal ; 17(1): 76, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315632

RESUMO

BACKGROUND: Tumor suppressor WWOX physically binds p53 and TIAF1 and together induces apoptosis and tumor suppression. To understand the molecular action, here we investigated the formation of WWOX/TIAF1/p53 triad and its regulation of cancer cell migration, anchorage-independent growth, SMAD promoter activation, apoptosis, and potential role in neurodegeneration. METHODS: Time-lapse microscopy was used to measure the extent of cell migration. Protein/protein interactions were determined by co-immunoprecipitation, FRET microscopy, and yeast two-hybrid analysis. The WWOX/TIAF1/p53 triad-mediated cancer suppression was determined by measuring the extent of cell migration, anchorage-independent growth, SMAD promoter activation, and apoptosis. p53-deficient lung cancer cell growth in nude mice was carried out to assess the tumor suppressor function of ectopic p53 and/or WWOX. RESULTS: Wwox-deficient MEF cells exhibited constitutive Smad3 and p38 activation and migrated individually and much faster than wild type cells. TGF-ß increased the migration of wild type MEF cells, but significantly suppressed Wwox knockout cell migration. While each of the triad proteins is responsive to TGF-ß stimulation, ectopically expressed triad proteins suppressed cancer cell migration, anchorage-independent growth, and SMAD promoter activation, as well as caused apoptosis. The effects are due in part to TIAF1 polymerization and its retention of p53 and WWOX in the cytoplasm. p53 and TIAF1 were effective in suppressing anchorage-independent growth, and WWOX ineffective. p53 and TIAF1 blocked WWOX or Smad4-regulated SMAD promoter activation. WWOX suppressed lung cancer NCI-H1299 growth and inhibited splenomegaly by inflammatory immune response, and p53 blocked the event in nude mice. The p53/WWOX-cancer mice exhibited BACE upregulation, APP degradation, tau tangle formation, and amyloid ß generation in the brain and lung. CONCLUSION: The WWOX/TIAF1/p53 triad is potent in cancer suppression by blocking cancer cell migration, anchorage-independent growth and SMAD promoter activation, and causing apoptosis. Yet, p53 may functionally antagonize with WWOX. p53 blocks WWOX inhibition of inflammatory immune response induced by cancer, and this leads to protein aggregation in the brain as seen in the Alzheimer's disease and other neurodegeneration.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/terapia , Neoplasias Pulmonares/terapia , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/deficiência , Oxidorredutase com Domínios WW/antagonistas & inibidores , Oxidorredutase com Domínios WW/deficiência
5.
Cell Physiol Biochem ; 38(5): 1727-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27160916

RESUMO

BACKGROUND: Temozolomide (TMZ), an oral alkylator of the imidazotetrazine family, is used to treat glioma. Whether this drug has any ionic effects in glioma cells remains largely unclear. METHODS: With the aid of patch-clamp technology, we investigated the effects of TMZ on the ionic currents in U373 glioma cells. The mRNA expression of KCNN4 (KCa3.1) in U373 glioma cells and TMZ's effect on K+ currents in these KCNN4 siRNA-transfected U373 cells were investigated. RESULTS: In whole-cell recordings, TMZ decreased the amplitude of voltage-dependent K+ currents (IK) in U373 cells. TMZ-induced IK inhibition was reversed by ionomycin or 1-ethyl-2-benzimidazolinone (1-EBIO). In cell-attached configuration, TMZ concentration-dependently reduced the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels with an IC50 value of 9.2 µM. Chlorzoxazone or 1-EBIO counteracted the TMZ-induced inhibition of IKCa channels. Although TMZ was unable to modify single-channel conductance, its inhibition of IKCa channels was weakly voltage-dependent and accompanied by a significant prolongation in the slow component of mean closed time. However, neitherlarge-conductance Ca2+-activated (BKCa) nor inwardly rectifying K+ (Kir) channels were affected by TMZ. In current-clamp mode, TMZ depolarized the cell membrane and 1-EBIO reversed TMZ-induced depolarization. TMZ had no effect on IK in KCNN4 siRNA-transfected U373 cells. CONCLUSION: In addition to the DNA damage it does, its inhibitory effect on IKCa channels accompanied by membrane depolarization could be an important mechanism underlying TMZ-induced antineoplastic actions.


Assuntos
Alquilantes/toxicidade , Dano ao DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Dacarbazina/toxicidade , Glioma , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ionomicina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temozolomida
6.
J Cell Physiol ; 228(5): 1017-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23042611

RESUMO

Obesity has been shown to be associated with the risk of colorectal cancer (CRC). Adipokines produced by the adipose tissue are linked to some malignancies, including CRC. Visfatin is an adipokine shown to be a biomarker of CRC malignant potential. In addition, the stromal cell-derived factor-1 (SDF-1) has been reported to play a role in CRC progression. Although the relationship between visfatin and CRC has been established, the underlying mechanism has not been clarified. We investigated the molecular mechanism governing the interaction between visfatin stimulation and SDF-1 expression in human CRC cell lines. We found that visfatin stimulation led to an increase in the expression and secretion of SDF-1 in CRC DLD-1 and SW48 cells. Experiments involving specific inhibitors and small interfering RNA demonstrated that the activation of ERK and p38 mitogen-activated protein kinase (MAPK) pathways are critical for visfatin-induced SDF-1 expression. Analysis of transcription factor binding using ELISA and luciferase reporter assays revealed that visfatin increased NF-κB- and AP-1-DNA-binding activities in DLD-1 cells. Inhibition of NF-κB and AP-1 activation blocked the visfatin-induced expression and activity of the SDF-1 promoter. The effect of visfatin on DLD-1 signaling and SDF-1 expression was mediated by ß1 integrin. In summary, these findings provide novel insights pertaining to the pathophysiological role of visfatin in CRC.


Assuntos
Quimiocina CXCL12 , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Integrina beta1 , Nicotinamida Fosforribosiltransferase/farmacologia , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B , Nicotinamida Fosforribosiltransferase/metabolismo , Fator de Transcrição AP-1/análise
7.
Toxicol Appl Pharmacol ; 272(3): 579-90, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891858

RESUMO

CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone), the major active agent of the alkaloid derivative, has been demonstrated to exert anticancer effects. Herein, we present an investigation focused on the identification of the target(s) of CIL-102's action and the mechanism of its action in apoptotic and anti-invasive pathways. Proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to assess changes in the expression of relevant protein treatment with CIL-102 that resulted in the inhibition of viability and invasion. Our results demonstrate that CIL-102 treatment of U87 cells decreased cell proliferation and invasiveness. CIL-102 dose-dependent induction of apoptosis and inhibitory invasiveness were accompanied by sustained phosphorylation of JNK1/2 and p70S6K as well as generation of the reactive oxygen species. In addition, differential proteins displayed between CIL-102-treated and untreated U87 were determined and validated. There were 11 differentially expressed proteins between the CIL-102-treated and untreated groups. Furthermore, we demonstrated that CIL-102 inhibited cancer cell proliferation and reduced anti-invasion properties by up-regulating the levels of FUMH (Fumarate hydratase). The investigation demonstrated that there was an increase in the cellular levels of FUMH in the CIL-102 reduction in viability and invasion via the activation of JNK1/2 and mTOR signaling modules. NAC administration and shRNA FUMH conferred resistance to CIL-102-inhibited HIF1α and MMP-2 levels via inhibition of JNK1/2 and mTOR activation. We concluded that CIL-102-induced an apoptosis cascade and decreased aggressiveness in astrocytoma cells by modulation of mitochondria function, providing a new mechanism for CIL-102 treatment.


Assuntos
Antineoplásicos/farmacologia , Glioma/genética , Invasividade Neoplásica/patologia , Proteômica/métodos , Quinolinas/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Invasividade Neoplásica/prevenção & controle , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Mediators Inflamm ; 2013: 628094, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401645

RESUMO

BACKGROUND: Dexamethasone (Dex) has been used to reduce inflammation in preterm infants with assistive ventilation and to prevent chronic lung diseases. However, Dex treatment results in adverse effects on the brain. Since the hippocampus contains a high density of glucocorticoid receptors (GCRs), we hypothesized that Dex affects neurogenesis in the hippocampus through inflammatory mediators. METHODS: Albino Wistar rat pups first received a single dose of Dex (0.5 mg/kg) on postnatal day 1 (P1) and were sacrificed on P2, P3, P5, and P7. One group of Dex-treated pups (Dex-treated D1D2) was given mifepristone (RU486, a GCR antagonist) on P1 and sacrificed on P2. Hippocampi were isolated for western blot analysis, TUNEL, cleaved-caspase 3 staining for cell counts, and morphological assessment. Control pups received normal saline (NS). RESULTS: Dex reduced the developmental gain in body weight, but had no effect on brain weight. In the Dex-treated D1D2 group, apoptotic cells increased in number based on TUNEL and cleaved-caspase 3 staining. Most of the apoptotic cells expressed the neural progenitor cell marker nestin. Dex-induced apoptosis in P1 pups was markedly reduced (60%) by pretreatment with RU486, indicating the involvement of GCRs. CONCLUSION: Early administration of Dex results in apoptosis of neural progenitor cells in the hippocampus and this is mediated through GCRs.


Assuntos
Dexametasona/farmacologia , Hipocampo/citologia , Receptores de Glucocorticoides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Peso Corporal/efeitos dos fármacos , Encéfalo , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mifepristona/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Receptores de Glucocorticoides/antagonistas & inibidores
9.
Pharm Biol ; 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24188411

RESUMO

Abstract Context: Malignant gliomas are the most commonly diagnosed brain tumors in adults. Chalcone and its derivatives have shown potential against glioblastoma and malignant gliomas. Objective: The inhibitory activity of geranyl prenylated chalcone was investigated in four glioma cell lines: C6, U87 MB, CNS-1 and 13-06 MB. Cell death caused by the prenylated chalcone was determined to be necrosis or apoptosis. Materials and methods: The inhibitory activity of geranyl prenylated chalcone with 5, 10, 15, 20, 25, 30 and 40 µg/ml (treatment time: 24, 48 and 72 h) was investigated in C6, U87 MB, CNS-1 and 13-06 MB. Cell cycle distribution, DNA fragmentation, chromatin condensation and protein expression were used as indicators of apoptosis. The migration ability of glioma cells with 30 µg/ml prenylated chalcone after 24 and 36 h incubation was also studied by the scratch wound assay. Results: After 24 h, treatment with 20 µg/ml prenylated chalcone reduced the proliferation (approximately 50%) of all four glioma cell lines (half maximal inhibitory concentration (IC50) = 20 µg/ml). Glioma cell death was verified by the fluorescence-activated cell sorter as prenylated chalcone-induced apoptosis. After running the analysis of protein expression, apoptotic activity induced by the prenylated chalcone was caspase independent for the C6 and U87 MB cell lines, but caspase dependent for the 13-06 MB and CNS-1 cell lines. In addition, prenylated chalcone treatment (30 µg/ml) resulted in the inhibition of glioma cell migration after 24 and 36 h treatment. Discussion and conclusion: Because prenylated chalcone-induced apoptosis inhibited the proliferation and reduced the invasiveness of glioma cells, the prenylated chalcone has potential as a new chemotherapeutic reagent in the treatment of malignant gliomas. The ultimate goal was to develop a novel potential multi-therapy for treating gliomas.

10.
Ultrasonics ; 131: 106949, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773481

RESUMO

The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.


Assuntos
Linfonodos , Vasos Linfáticos , Camundongos , Animais , Linfonodos/patologia , Meios de Contraste , Sistema Linfático/diagnóstico por imagem , Vasos Linfáticos/diagnóstico por imagem , Ultrassonografia
11.
Toxicol Appl Pharmacol ; 263(1): 73-80, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683510

RESUMO

CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0µM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr(15) and Cdc25cSer(216). Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer(216) expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer(216) in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer(216) cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells.


Assuntos
Antineoplásicos/farmacologia , Astrocitoma/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/biossíntese , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Humanos , Quinolinas/uso terapêutico , Sais de Tetrazólio , Tiazóis
12.
Cells ; 11(14)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883580

RESUMO

Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer's disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aß42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.


Assuntos
Doença de Alzheimer , Neoplasias , Oxidorredutase com Domínios WW , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular , Progressão da Doença , Humanos , Imunidade/genética , Imunidade/fisiologia , Camundongos , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
13.
Pharm Biol ; 49(3): 314-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21281247

RESUMO

CONTEXT: A newly discovered geranyl prenylated chalcone, semisynthesized from naturally occurring nymphaeol C, has the ability to inhibit the growth of CNS1 (glioblastoma) and 13-06 (malignant glioma) cells. A second-order regression model was established to predict the normalized cell viability of CNS1 and 13-06 cells. OBJECTIVE: The goal of this study is to evaluate the influence of prenylated chalcone on the glioblastoma and malignant glioma cell lines. For the first time, response surface methodology (RSM) has been introduced to perform a cell line study. MATERIALS AND METHODS: A newly discovered prenylated chalcone was used. This compound is a member of the flavonoid family and possesses a common phenylbenzopyrone structure. Two independent factors, including prenylated chalcone concentration and uptake time, were carefully evaluated by a 2² factorial design. RSM was introduced as a new method for CNS1 and 13-06 cell line studies. RESULTS: For CNS1 cells, the least inhibition uptake time was 20.7 h, and the least inhibition dose was 12.4 µg/ml. For 13-06 cells, the best inhibition uptake time was 26.2 h, and the least inhibition dose was 12.0 µg/ml. DISCUSSION AND CONCLUSION: The RSM model successfully predicted the normalized cell viability of CNS1 and 13-06 cells through the use of prenylated chalcone. The results obtained in this study will be useful for further studies on the use of prenylated chalcone.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Chalcona/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Prenilação/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Chalcona/isolamento & purificação , Flavanonas/uso terapêutico , Glioblastoma/patologia , Glioma/patologia
14.
Am J Cancer Res ; 11(9): 4638-4640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659911

RESUMO

[This corrects the article on p. 1148 in vol. 11, PMID: 33948351.].

15.
Cells ; 10(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359949

RESUMO

WW domain-containing oxidoreductase (WWOX) is known as one of the risk factors for Alzheimer's disease (AD), a neurodegenerative disease. WWOX binds Tau via its C-terminal SDR domain and interacts with Tau phosphorylating enzymes ERK, JNK, and GSK-3ß, and thereby limits AD progression. Loss of WWOX in newborns leads to severe neural diseases and early death. Gradual loss of WWOX protein in the hippocampus and cortex starting from middle age may slowly induce aggregation of a protein cascade that ultimately causes accumulation of extracellular amyloid beta plaques and intracellular tau tangles, along with reduction in inhibitory GABAergic interneurons, in AD patients over 70 years old. Age-related increases in pS14-WWOX accumulation in the brain promotes neuronal degeneration. Suppression of Ser14 phosphorylation by a small peptide Zfra leads to enhanced protein degradation, reduction in NF-κB-mediated inflammation, and restoration of memory loss in triple transgenic mice for AD. Intriguingly, tumor suppressors p53 and WWOX may counteract each other in vivo, which leads to upregulation of AD-related protein aggregation in the brain and lung. WWOX has numerous binding proteins. We reported that the stronger the binding between WWOX and its partners, the better the suppression of cancer growth and reduction in inflammation. In this regard, the stronger complex formation between WWOX and partners may provide a better blockade of AD progression. In this review, we describe whether and how WWOX and partner proteins control inflammatory response and protein aggregation and thereby limit AD progression.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Placa Amiloide/metabolismo
16.
Am J Cancer Res ; 11(4): 1148-1169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948351

RESUMO

In spite of radio- and chemotherapy, glioblastoma (GBM) develops therapeutic resistance leading to recurrence and poor prognosis. Therefore, understanding the underlying mechanisms of resistance is important to improve the treatment of GBM. To this end, we developed a radiation-resistant cell model by exposure to consecutive periods of irradiation. Simultaneously, single high-dose irradiation was introduced to determine "when" GBM developed consecutive irradiation-induced resistance (CIIR). We found that CIIR promoted TGF-ß secretion, activated pro-survival Akt, and downregulated p21 in a p53-independent manner. Furthermore, CIIR upregulated multidrug-resistant proteins, resulting in temozolomide resistance. CIIR GBM also enhanced cell mobility and accelerated cell proliferation. The big-conductance calcium-activated potassium channel (BK channel) is highly expressed and activated in GBM. However, CIIR diminishes BK channel activity in an expression-independent manner. Cilostazol is a phosphodiesterase-3 inhibitor for the treatment of intermittent claudication and was able to reverse CIIR-induced BK channel inactivation. Paxilline, a BK channel blocker, promoted cell migration and proliferation in parental GBM cells. In contrast, Cilostazol inhibited CIIR-induced cell motility, proliferation, and the ability to form tumor spheres. Moreover, we established a radiation-resistant GBM in vivo model by intracranially injecting CIIR GBM cells into the brains of NOD/SCID mice. We found that Cilostazol delayed tumor in vivo growth and prolonged survival. As such, inactivation of the BK channel assists GBM in developing radiation resistance. Accordingly, restoring BK channel activity may be an effective strategy to improve therapeutic efficacy, and cilostazol could be repurposed to treat GBM.

17.
J Neurooncol ; 99(2): 273-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20069341

RESUMO

Malignant sweat gland tumors are rare neoplasms with high recurrence and metastasis rates of over 50%. Clinically, they are often either not diagnosed or diagnosed improperly and are encountered as a histological surprise. Herein, we report a 50-year-old woman who suffered from chronic headaches and a left-side limping gait. Magnetic resonance imaging revealed a T1 and T2 heterogeneous intense dural-based lesion at right-frontal convexity. The pathological diagnosis of papillary meningioma was rendered at the time. Because there was no evidence of residual tumor, tumor recurrence, or distant metastases during the three-year follow-up, the clinician believed questioning the initial diagnosis was warranted. After pathological review, the final diagnosis was low-grade hidradenocarcinoma. A review of the literature suggests this is the first reported case of dural-based hidradenocarcinoma with local brain invasion. Given the lack of scalp or skull bone involvement, we speculated that the tumor may have arisen from ectopic sweat gland cells entrapped in the dural mater.


Assuntos
Adenoma de Glândula Sudorípara/patologia , Neoplasias Encefálicas/patologia , Neoplasias das Glândulas Sudoríparas/patologia , Neoplasias Encefálicas/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Técnicas Imunoenzimáticas , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neoplasias das Glândulas Sudoríparas/metabolismo
18.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764489

RESUMO

Synthetic Zfra4-10 and WWOX7-21 peptides strongly suppress cancer growth in vivo. Hypothetically, Zfra4-10 binds to the membrane Hyal-2 of spleen Z cells and activates the Hyal-2/WWOX/SMAD4 signaling for cytotoxic Z cell activation to kill cancer cells. Stimulation of membrane WWOX in the signaling complex by a WWOX epitope peptide, WWOX7-21, is likely to activate the signaling. Here, mice receiving Zfra4-10 or WWOX7-21 peptide alone exhibited an increased binding of endogenous tumor suppressor WWOX with ERK, C1qBP, NF-κB, Iba1, p21, CD133, JNK1, COX2, Oct4, and GFAP in the spleen, brain, and/or lung which led to cancer suppression. However, when in combination, Zfra4-10 and WWOX7-21 reduced the binding of WWOX with target proteins and allowed tumor growth in vivo. In addition to Zfra4-10 and WWOX7-21 peptides, stimulating the membrane Hyal-2/WWOX complex with Hyal-2 antibody and sonicated hyaluronan (HAson) induced Z cell activation for killing cancer cells in vivo and in vitro. Mechanistically, Zfra4-10 binds to membrane Hyal-2, induces dephosphorylation of WWOX at pY33 and pY61, and drives Z cell activation for the anticancer response. Thus, Zfra4-10 and WWOX7-21 peptides, HAson, and the Hyal-2 antibody are of therapeutic potential for cancer suppression.

19.
Cell Death Discov ; 5: 97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123603

RESUMO

Proapoptotic tumor suppressor WWOX is upregulated in the early stage of cancer initiation, which probably provides limitation to cancer growth and progression. Later, WWOX protein is reduced to enhance cancer cell growth, migration, invasiveness and metastasis. To understand how WWOX works in controlling cancer progression, here we demonstrate that apoptotic stress mediated by ectopic WWOX stimulated cancer cells to secrete basic fibroblast growth factor (bFGF) in order to support capillary microtubule formation. This event may occur in the cancer initiation stage. Later, when WWOX loss occurs in cancer cells, hyaluronidase production is then increased in the cancer cells to facilitate metastasis. We determined that inhibition of membrane hyaluronidase Tyr216-phosphorylated Hyal-2 by antibody suppresses cancer growth in vivo. WWOX-negative (WWOX-) cells dodged WWOX+cells in the microenvironment by migrating individually backward to avoid physical contacts and yet significantly upregulating the redox activity of WWOX+parental cells or other WWOX+cell types for causing apoptosis. Upon detecting the presence of WWOX+cells from a distance, WWOX- cells exhibit activation of MIF, Hyal-2, Eph, and Wnt pathways, which converges to MEK/ERK signaling and enables WWOX- cells to evade WWOX+cells. Inhibition of each pathway by antibody or specific chemicals enables WWOX- cells to merge with WWOX+cells. In addition, exogenous TGF-ß assists WWOX- cells to migrate collectively forward and merge with WWOX+cells. Metastatic WWOX- cancer cells frequently secrete high levels of TGF-ß, which conceivably assists them to merge with WWOX+cells in target organs and secure a new home base in the WWOX+microenvironment. Together, loss of WWOX allows cancer cells to develop strategies to dodge, compromise and even kill WWOX-positive cells in microenvironment.

20.
Cornea ; 27(4): 471-5, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18434852

RESUMO

PURPOSE: Subconjunctival injection of mitomycin C (MMC) before pterygium excision is a new adjunctive therapy to decrease pterygium recurrence. This study aimed to investigate the ultrastructural changes in pterygium after subconjunctival injection of MMC. METHODS: Four patients underwent subconjunctival injection of 0.1 mL of 0.15 mg/mL MMC 1 month before pterygium excision, and 2 patients served as controls without preoperative MMC injection. The excised specimens of pterygium were examined under transmission electron microscopy. RESULTS: Epithelial cells of the treated pterygium remained unchanged. However, stromal fibroblasts were decreased in number, were oval rather than spindle-shaped, and had shrunken cytoplasmic processes; some were degenerating or apoptotic. Collagen and elastic fibers were decreased in density, disorganized, and degenerated. Capillary endothelial cells were thickened and swollen, with narrow or obliterated lumens. Axonal swelling and demyelination were observed. CONCLUSIONS: Subconjunctival injection of MMC inhibits fibrovascular activity in the pterygial stroma, leading to degeneration of the extracellular matrix and nerve axons. These ultrastructural changes are consistent with the clinical observation of reduced vascularity in the pterygium after MMC injection and verify the effectiveness of subconjunctival MMC injection 1 month before pterygium excision in decreasing the risk of pterygium recurrence.


Assuntos
Alquilantes/administração & dosagem , Túnica Conjuntiva/efeitos dos fármacos , Mitomicina/administração & dosagem , Pterígio/patologia , Pterígio/cirurgia , Idoso , Células Epiteliais/ultraestrutura , Feminino , Fibroblastos/ultraestrutura , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Células Estromais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA