Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Chemistry ; 30(17): e202303979, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206093

RESUMO

Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.

2.
Acta Paediatr ; 113(7): 1569-1578, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634613

RESUMO

AIM: Crying seems to be a common trigger for abusive head trauma (AHT), which is the leading cause of fatalities from physical abuse in infants. Our objective was to evaluate knowledge of AHT, crying infants and correct behavioural measures in a general population. METHODS: An online questionnaire (LimeSurvey) was created to assess the risk of shaking. The online survey contained a total of 41 questions, including a demonstration of a previously recorded video in which an infant doll is shaken. RESULTS: A total of 319 people, 245 of them (76.8%) with own children, participated in the study. Almost all respondents (98.4%) were aware of serious injuries due to shaking, even to the point of death (98.1%). Most participants (97.5%) had heard the term 'shaking trauma' prior but did not receive any professional information, neither before nor after birth (85.2% or 86%), or during follow-up examinations (88.5%). The majority of the participants (95%) considered that useful coping strategies in infant crying were inappropriate. CONCLUSION: The consequences of shaking an infant were common knowledge in a normal population, whereas there was a knowledge gap regarding the management of excessive crying infants. Prevention programmes should mainly focus on male caregivers during postnatal care.


Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Choro , Síndrome do Bebê Sacudido , Humanos , Choro/psicologia , Masculino , Lactente , Recém-Nascido , Feminino , Síndrome do Bebê Sacudido/prevenção & controle , Síndrome do Bebê Sacudido/diagnóstico , Adulto , Traumatismos Craniocerebrais/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Inquéritos e Questionários , Adulto Jovem , Pessoa de Meia-Idade , Adolescente
3.
Psychol Med ; 53(16): 7685-7697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357891

RESUMO

BACKGROUND: In late 2019, a new virus began spreading in Wuhan, China. By the end of 2021, more than 260 million people worldwide had been infected and 5.2 million people had died because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Various countermeasures have been implemented to contain the infections, depending on the country, infection prevalence, and political and infrastructural resources. The pandemic and the containment measures have induced diverse psychological burdens. Using internet queries as a proxy, this study examines the psychological consequences on a European level of SARS-CoV-2 containment measures. METHODS: Using informetric analyses, this study reviews within 32 European countries a total of 28 search parameters derived from the International Statistical Classification of Diseases and Related Health Problems (ICD-10) as aspects of affective disorder. RESULTS: Our results show that there are several psychological aspects which are significantly emphasized during the pandemic and its containment measures: 'anxiety', 'dejection', 'weariness', 'listlessness', 'loss of appetite', 'loss of libido', 'panic attack', and 'worthlessness'. These terms are significantly more frequently part of a search query during the pandemic than before the outbreak. Furthermore, our results revealed that search parameters such as 'psychologist', 'psychotherapist', 'psychotherapy' have increased highly significantly (p < 0.01) since the pandemic. CONCLUSIONS: The psychological distress caused by the pandemic correlates significantly with the frequency of people searching for psychological and psychotherapeutic support on the Internet.


Assuntos
COVID-19 , Humanos , Ansiedade/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Ferramenta de Busca
4.
Langmuir ; 39(36): 12835-12844, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647144

RESUMO

Homoaggregation of polystyrene microplastics (MPs) and heteroaggregation of MPs with anionic clay minerals, namely, layered double hydroxide (LDH), in different salt (NaCl, CaCl2, and Na2SO4) solutions were systematically investigated using light scattering techniques. The salt type and ionic strength had significant effects on the stability of both MPs and LDH particles individually and the results could be explained by DLVO theory and the Schulze-Hardy rule. However, once stable colloidal dispersions of the individual particles were mixed, heteroaggregation occurred between the oppositely charged MPs and LDH, which was also confirmed by transmission electron microscopy and X-ray scattering. Adsorption of the LDH particles resulted in neutralization and reversal of MPs surface charge at appropriate LDH doses. Once LDH adsorption neutralized the negative charges of the MP spheres, rapid aggregation was observed in the dispersions, whereas stable samples formed at high and low LDH concentrations. The governing interparticle interactions included repulsive electrical double-layer forces, as well as van der Waals and patch-charge attractions, the strength of which depended on the mass ratio of the interacting particles and the composition of the aqueous solvent. Our results shed light on the colloidal behavior of MPs in a complex aquatic environment and, in the long term, are also useful for developing LDH-based approaches for water remediation to remove contamination with MP particles.

5.
Analyst ; 147(7): 1367-1374, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35254348

RESUMO

The detection and quantification of antioxidant molecules is an important task in food science, the fine chemical industry and healthcare. Antioxidants help in preventing the deterioration of nutrition and healthcare products, while eliminating over-the-limit exogenic reactive species, which may lead to illnesses. In our contribution, an inexpensive and rapid method to determine the concentration of various molecular antioxidants was developed. The principle of the analysis relies on the cupric ion reducing antioxidant capacity (CuPRAC) method, which is based on the color-changing reduction of chelated Cu2+ ions. This complex was successfully immobilized on an alginate-functionalized layered double hydroxide (dLDH) nanosheet via electrostatic interactions. The synthesis conditions of alginate (NaAlg) and the cupric complex were optimized, and the optimized composite was fabricated on cellulose paper to obtain a sensing platform. The paper-based sensor was superior to the ones prepared without the dLDH support, as the limit of detection (LOD) values decreased, and the linearity ranges broadened. The results offer a single-point measurement to evaluate the antioxidant efficiency in a cuvette-based method. The superior ability of the sensor was assigned to the presence of solid dLDH particles, as they offer adsorption sites for the dissolved antioxidant molecules, which contributes significantly to the decrease of the diffusion limitation during the detection process.


Assuntos
Antioxidantes , Cobre , Antioxidantes/análise , Cobre/química , Oxirredução
6.
Langmuir ; 37(7): 2466-2475, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33555897

RESUMO

The charging and aggregation properties of boron nitride nanospheres (BNNSs) were investigated in the presence of electrolytes of different compositions and valences in aqueous suspensions. The influence of mono- and multivalent cations (counterions) and anions (coions) on the colloidal stability of the negatively charged particles was studied over a wide range of salt concentrations. For monovalent ions, similar trends were determined in the stability and charging of the particles irrespective of the salt composition, i.e., no ion-specific effects were observed. Once multivalent counterions were involved, the critical coagulation concentrations (CCCs) decreased with the valence in line with the direct Schulze-Hardy rule. The dependence indicated an intermediate charge density for BNNSs. The influence of the coions on the CCCs was weaker and the destabilization ability followed the inverse Schulze-Hardy rule. The predominant interparticle forces were identified as electrical double-layer repulsion and van der Waals attraction. These findings offer useful information to design stable BNNS dispersions in various applications, where mono- and multivalent electrolytes or their mixtures are present in the samples.

7.
Langmuir ; 37(17): 5399-5407, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878269

RESUMO

Boron nitride nanospheres (BNNSs) were functionalized with polyelectrolytes. The effect of the polyelectrolyte dose and ionic strength on the charging and aggregation properties was investigated. At appropriate polyelectrolyte doses, charge neutralization occurred, whereas by increasing the dose, charge reversal was observed. The complete coating of the particles was indicated by a plateau in the ζ-potential values, which do not change significantly beyond the dose corresponding to the onset of such a plateau. The dispersions were highly aggregated around the charge neutralization point, while at lower or higher doses, the particles were stable. The salt-induced aggregation experiments revealed that the polyelectrolyte coatings contribute to the colloidal stability of the particles, namely, the critical coagulation concentrations deviated from the one determined for bare BNNSs. The presence of electrostatic and steric interparticle forces induced by the adsorbed polyelectrolyte chains was assumed. The obtained results confirm that the comprehensive investigation of the colloidal stability of BNNS particles is crucial to design stable or unstable dispersions and that polyelectrolytes are suitable agents for both stabilization and destabilization of BNNS dispersions, depending on the purpose of their application.

8.
Langmuir ; 37(40): 11869-11879, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601883

RESUMO

Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.

9.
Soft Matter ; 17(40): 9116-9124, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34569591

RESUMO

The influence of ionic liquid (IL) anions and cations on the charging and aggregation properties of layered double hydroxide (LDH) nanoparticles was systematically studied. Surface charge characteristics were explored using zeta potential measurements, while aggregation processes were followed in dynamic light scattering experiments in aqueous IL solutions. The results revealed that the aggregation rates of LDHs were sensitive to the composition of ILs leading to IL-dependent critical coagulation concentration (CCC) values being obtained. The origin of the interparticle forces was found to be electrostatic, in line with the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, as the experimental aggregation kinetics were in good agreement with the predicted data. The ion specific adsorption of IL anions led to different surface charge densities for LDHs, which decreased in the order Cl- > Br- > DCA- > SCN- > NO3- for counterions and BMIM+ > BMPYR+ > BMPY+ > BMPIP+ in the case of coions resulting in weaker electrical double layer repulsion in these sequences. Since van der Waals forces are always present and their strength does not depend significantly on the ionic strength, the CCC values decreased in the above order. The present results shed light on the importance of the interfacial arrangement of the IL constituent ions on the colloidal stability of particle dispersions and provide important information on the design of stable or unstable particle-ionic liquid systems.

10.
J Med Internet Res ; 23(4): e27214, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844638

RESUMO

BACKGROUND: Web-based analysis of search queries has become a very useful method in various academic fields for understanding timely and regional differences in the public interest in certain terms and concepts. Particularly in health and medical research, Google Trends has been increasingly used over the last decade. OBJECTIVE: This study aimed to assess the search activity of pain-related parameters on Google Trends from among the most populated regions worldwide over a 3-year period from before the report of the first confirmed COVID-19 cases in these regions (January 2018) until December 2020. METHODS: Search terms from the following regions were used for the analysis: India, China, Europe, the United States, Brazil, Pakistan, and Indonesia. In total, 24 expressions of pain location were assessed. Search terms were extracted using the local language of the respective country. Python scripts were used for data mining. All statistical calculations were performed through exploratory data analysis and nonparametric Mann-Whitney U tests. RESULTS: Although the overall search activity for pain-related terms increased, apart from pain entities such as headache, chest pain, and sore throat, we observed discordant search activity. Among the most populous regions, pain-related search parameters for shoulder, abdominal, and chest pain, headache, and toothache differed significantly before and after the first officially confirmed COVID-19 cases (for all, P<.001). In addition, we observed a heterogenous, marked increase or reduction in pain-related search parameters among the most populated regions. CONCLUSIONS: As internet searches are a surrogate for public interest, we assume that our data are indicative of an increased incidence of pain after the onset of the COVID-19 pandemic. However, as these increased incidences vary across geographical and anatomical locations, our findings could potentially facilitate the development of specific strategies to support the most affected groups.


Assuntos
COVID-19/epidemiologia , Dor/virologia , Ferramenta de Busca/estatística & dados numéricos , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação , Ferramenta de Busca/tendências
11.
J Am Chem Soc ; 142(7): 3540-3547, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986022

RESUMO

Covalent organic frameworks (COFs) are commonly synthesized under harsh conditions yielding unprocessable powders. Control in their crystallization process and growth has been limited to studies conducted in hazardous organic solvents. Herein, we report a one-pot synthetic method that yields stable aqueous colloidal solutions of sub-20 nm crystalline imine-based COF particles at room temperature and ambient pressure. Additionally, through the combination of experimental and computational studies, we investigated the mechanisms and forces underlying the formation of such imine-based COF colloids in water. Further, we show that our method can be used to process the colloidal solution into 2D and 3D COF shapes as well as to generate a COF ink that can be directly printed onto surfaces. These findings should open new vistas in COF chemistry, enabling new application areas.


Assuntos
Estruturas Metalorgânicas/síntese química , Água/química , Aldeídos/química , Derivados de Benzeno/química , Biomimética/métodos , Coloides/síntese química , Coloides/química , Cristalização , Iminas/síntese química , Iminas/química , Micelas , Tamanho da Partícula
12.
Soft Matter ; 16(46): 10518-10527, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33073831

RESUMO

Highly stable antioxidant dispersions were designed on the basis of ring-opened ellagic acid (EA) intercalated into MgAl-layered double hydroxide (LDH) nanoparticles. The morphology of the composite was delicately modified with ethanolic washing to obtain EtOH-EA-LDH with a high specific surface area. The colloidal stability was optimized by surface functionalization with positively charged polyelectrolytes. Polyethyleneimine (PEI), protamine sulfate (PS) and poly(acrylamide-co-diallyl dimethyl ammonium chloride) (PAAm-co-DADMAC) was adsorbed onto the surface of the oppositely charged EtOH-EA-LDH leading to charge neutralization and overcharging at appropriate doses. Formation of adsorbed polyelectrolyte layers provided remarkable colloidal stability for the EtOH-EA-LDH. Modification with PEI and PAAm-co-DADMAC outstandingly improved the resistance of the particles against salt-induced aggregation with a critical coagulation concentration value above 1 M, while only limited stability was achieved by covering the nanoparticles with PS. The high antioxidant activity of EtOH-EA-LDH was greatly preserved upon polyelectrolyte coating, which was proved in the scavenging of radicals in the test reaction applied. Hence, an active antioxidant nanocomposite of high drug dose and remarkable colloidal stability was obtained to combat oxidative stress in systems of high electrolyte concentrations.


Assuntos
Nanocompostos , Nanopartículas , Antioxidantes , Hidróxidos , Polietilenoimina
13.
Phys Chem Chem Phys ; 22(42): 24764-24770, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107516

RESUMO

Ion specific effects of ionic liquid (IL) constituents on the surface charge and aggregation properties of two types of particles (positively charged amidine (AL) and polyimidazolium-functionalized sulfate (SL-IP-2) latexes) were investigated in IL solutions containing different anions and the 1-butyl-3-methylimidazolium cation. For the AL systems, the affinity of IL anions to the particle surface followed the sequence chloride < bromide < nitrate < acetate. The critical coagulation concentration values decreased in the same order indicating that ion specific adsorption determines the surface charge density and the extent of the repulsive interparticle forces. In contrast, no tendencies were observed for the SL-IP-2 particles, i.e., both charge and aggregation features were insensitive to the type of anions. This surprising behavior sheds light on that surface functionalization with the polyimidazolium compound effectively masks interfacial ion specific effects. These results indicate new possible routes to the design of processable particle dispersions in ILs irrespective of their composition.

14.
Langmuir ; 35(14): 4986-4994, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30888825

RESUMO

Charging and aggregation processes of titania nanosheets (TNS) were extensively studied in the presence of oppositely charged or like-charged polyelectrolytes in aqueous dispersions. The surface charge of the TNS was systematically varied by the pH; therefore, positive nanosheets were obtained at pH 4 and negative ones at pH 10. Strong adsorption of poly(styrene sulfonate) (PSS) of high negative line charge density on the TNS was observed at pH 4, leading to charge neutralization and reversal of the original sign of charge of the nanosheets. The adsorption of like-charged poly(diallyldimethylammonium chloride) (PDADMAC) was also feasible through a hydrophobic interaction. The predominating interparticle forces were mainly of the DLVO-type, but additional patch-charge attraction also took place in the case of PSS at low surface coverage. The TNS was found to be hydrophilic at pH 10 and no adsorption of like-charged PSS was possible because of strong electrostatic repulsion between the polyelectrolyte and the surface. The PDADMAC showed high affinity to the oppositely charged TNS surface in alkaline dispersions, giving rise to neutral and positively charged nanosheets at appropriate polyelectrolyte doses. Formation of a saturated PDADMAC layer on the TNS led to high resistance against salt-induced aggregation through the electrosteric stabilization mechanism. These results shed light on the importance of polyelectrolyte concentration, ionic strength, and charge balance on the colloidal stability of TNS, which is especially important in applications, where the nanosheets are dispersed in complex solution containing polymeric compounds and electrolytes.

15.
Inorg Chem ; 58(18): 12112-12121, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483639

RESUMO

In this study, biocompatible gadolinium diethylenetriaminepentaacetate (Gd(DTPA))-intercalated (Zn,Al)-layered double hydroxide (LDH) nanoparticles were synthesized, characterized for Gd(DTPA) loading percentage and nanostructure, and the spin-lattice relaxation times (T1) measured to determine their suitability as a potential T1-weighted contrast agent for magnetic resonance imaging (MRI). Compared to the most commonly used contrast agent in clinical MRI (i.e., molecular Gd(DTPA)), significant increases in longitudinal relaxivity (r1) were measured for all Gd(DTPA)-intercalated nanoparticles. For a specific Zn2Al(OH)6(Cl,0.5CO3)0.56Gd(DTPA)0.086·xH2O composition, r1 was found to be 28.38 s-1 mM-1, which is over 6 times the r1 of molecular Gd(DTPA). This dramatic increase in r1 is attributed to (a) the much longer rotational correlation time (τR) of nanoparticles and (b) the inherent water of LDH that forms the second-/outer-sphere in the vicinity of intercalated Gd(DTPA)2-. The latter, with an extensive hydrogen bonding network and insignificant translational motion, results in a longer mean residence lifetime (τM), which makes the contribution of second-/outer-sphere significant. Therefore, when the Gd(DTPA)2- loading percentage increases from 8.6 to 55%, the diminution of the ratio of inherent water to Gd(DTPA)2- concomitantly diminishes the contributions by second-/outer-sphere water to r1. Additionally, the modest increase in r1 with decreasing particle size (∼315-540 nm) is perhaps due to the shortening of τM. Finally, the spin-spin relaxation times (T2) of 17O, determined at various temperatures, show a negligible exchange of water molecules at room temperature. Therefore, the very high r1 of nanoparticles indicate that protons of the bulk water are still accessible to the Gd3+ centers, possibly dominated by prototropic exchange through the hydrogen bonding network.

16.
Chembiochem ; 19(4): 404-410, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144009

RESUMO

The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes.


Assuntos
Enzimas Imobilizadas/química , Nanoestruturas/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Superóxido Dismutase/química , Titânio/química , Antioxidantes/química , Antioxidantes/metabolismo , Coloides/química , Coloides/metabolismo , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Sódio/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície
17.
Phys Chem Chem Phys ; 20(14): 9436-9448, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565435

RESUMO

Direct force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction. In monovalent salt solutions, the AL particles are positively charged, while the SL particles are negatively charged. In solutions containing ferrocyanide, the charge of the AL particles is reversed as the concentration is increased. The longer-ranged component of all force profiles is fully compatible with DLVO theory, provided effects of charge regulation are included. At shorter distances, an additional exponential attraction must be introduced, whereby the respective decay length is about 2 nm for the AL-AL pair, and below 1 nm for the SL-SL pair. This non-DLVO force is intermediate for the asymmetric AL-SL pair. These additional forces are probably related to charge fluctuations, patch-charged interactions, or hydrophobic forces.

18.
Langmuir ; 33(7): 1695-1704, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28127961

RESUMO

The Schulze-Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze-Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.

19.
Langmuir ; 33(38): 9750-9758, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28829607

RESUMO

The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.

20.
Soft Matter ; 13(4): 842-851, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28078336

RESUMO

Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA