Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 42(3): 931-946, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30338858

RESUMO

SNF1-related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signalling that regulate plant acclimation to environmental stresses and ABA-dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA-non-activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S-segment is involved in the regulation of dehydrin subcellular localization in response to stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Pressão Osmótica , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Desidratação/metabolismo , Espectrometria de Massas , Microscopia Confocal , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Quinases/fisiologia , Proteômica
2.
Int J Mol Sci ; 20(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609769

RESUMO

In response to salinity and various other environmental stresses, plants accumulate reactive oxygen species (ROS). The ROS produced at very early stages of the stress response act as signaling molecules activating defense mechanisms, whereas those produced at later stages in an uncontrolled way are detrimental to plant cells by damaging lipids, DNA, and proteins. Multiple systems are involved in ROS generation and also in ROS scavenging. Their level and activity are tightly controlled to ensure ROS homeostasis and protect the plant against the negative effects of the environment. The signaling pathways responsible for maintaining ROS homeostasis in abiotic stress conditions remain largely unknown. Here, we show that in Arabidopsis thaliana, two abscisic acid- (ABA)-non-activated SNF1-releted protein kinases 2 (SnRK2) kinases, SnRK2.4 and SnRK2.10, are involved in the regulation of ROS homeostasis in response to salinity. They regulate the expression of several genes responsible for ROS generation at early stages of the stress response as well as those responsible for their removal. Moreover, the SnRK2.4 regulate catalase levels and its activity and the level of ascorbate in seedlings exposed to salt stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Catalase/genética , Catalase/metabolismo , Homeostase , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
3.
Methods Mol Biol ; 2462: 17-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152377

RESUMO

SNF1-related protein kinase 2 s (SnRK2s) are major regulators of plant growth, development and responses to environmental stresses. Together with clade A protein phosphatases of type 2C (PP2C) and REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR also known as PYRABACTIN RESISTANCE1 (PYR1) or PYR1-LIKE (PYL)) soluble abscisic acid (ABA) receptors they form the core of ABA-signaling. Clade A PP2Cs play a negative role in ABA signaling, primarily by inhibiting SnRK2 activity, through direct interaction and dephosphorylation of SnRK2s. Here, we describe two methods, which can be used for monitoring inhibition of the SnRK2 activity by PP2C phosphatases. One of them is an in vitro dephosphorylation assay using SnRK2 as the substrate followed by a classical in-gel kinase-activity assay and the other is immunocomplex kinase-activity assay, which can be applied for analysis of the SnRK2 activity in plant material.


Assuntos
Proteínas de Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
4.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571829

RESUMO

SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Abscísico/metabolismo , Pressão Osmótica/fisiologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA