Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Am Chem Soc ; 146(3): 2062-2071, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226790

RESUMO

A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for ß-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over ß-hairpin formation by the introduction of a photosensitive ß-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired ß-turn structure. A new azobenzene-based ß-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the ß-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, ß-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of ß-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Peptídeos/química , Compostos Azo , Doença de Huntington/metabolismo , Aminoácidos
2.
Angew Chem Int Ed Engl ; 63(21): e202319321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511339

RESUMO

Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.

3.
J Am Chem Soc ; 145(36): 19894-19902, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656631

RESUMO

Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.

4.
Angew Chem Int Ed Engl ; 62(30): e202300681, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026576

RESUMO

Photopharmacology is an attractive approach for achieving targeted drug action with the use of light. In photopharmacology, molecular photoswitches are introduced into the structure of biologically active small molecules to allow for the optical control of their potency. Going beyond trial and error, photopharmacology has progressively applied rational drug design methodologies to devise light-controlled bioactive ligands. In this review, we categorize photopharmacological efforts from the standpoint of medicinal chemistry strategies, focusing on diffusible photochromic ligands modified with photoswitches that operate through E-Z bond isomerization. In the vast majority of cases, photoswitchable ligands are designed as analogs of existing compounds, through a variety of approaches. By analyzing in detail a comprehensive list of instructive examples, we describe the state of the art and discuss future opportunities for rational design in photopharmacology.


Assuntos
Química Farmacêutica , Desenho de Fármacos , Ligantes
5.
Angew Chem Int Ed Engl ; 62(16): e202218203, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36800101

RESUMO

Light-induced 9,10-phenanthrenequinone-electron-rich alkene (PQ-ERA) photocycloadditions are an attractive new type of photoclick reaction, featuring fast conversions and high biocompatibility. However, the tunability of the reaction was hardly investigated up to now. To this end, we explored the influence of substituents on both reaction partners and the reaction rate between the PQs and ERAs. We identified new handles for functionalization and discovered that using enamines as ERAs leads to drastically enhanced rates (>5400 times faster), high photoreaction quantum yields (ΦP , up to 65 %), and multicolor emission output as well as a high fluorescence quantum yield of the adducts (ΦF , up to 97 %). Further investigation of the photophysical and photochemical properties provided insights to design orthogonal reaction systems both in solution and on nanoparticle surfaces for ultrafast chemoselective functionalization by photoclick reactions.

6.
Trends Biochem Sci ; 43(8): 567-575, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934030

RESUMO

In biomedical sciences, the function of a protein of interest is investigated by altering its net activity and assessing the consequences for the cell or organism. To change the activity of a protein, a wide variety of chemical and genetic tools have been developed. The drawback of most of these tools is that they do not allow for reversible, spatial and temporal control. Here, we describe selected developments in photopharmacology that aim at establishing such control over protein activity through bioactive molecules with photo-controlled potency. We also discuss why such control is desired and what challenges still need to be overcome for photopharmacology to reach its maturity as a chemical biology research tool.


Assuntos
Luz , Processos Fotoquímicos , Proteínas/efeitos da radiação , Proteínas/metabolismo , Fatores de Tempo
7.
J Am Chem Soc ; 144(27): 12421-12430, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775744

RESUMO

Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY). Here, we describe a novel and general approach to greatly increase the photolysis QY of heterolytic PPGs through stabilization of an intermediate chromophore cation. When applied to coumarin PPGs, our strategy resulted in systems possessing an up to a 35-fold increase in QY and a convenient fluorescent readout during their uncaging, all while requiring the same number of synthetic steps for their preparation as the usual coumarin systems. We demonstrate that the same QY engineering strategy applies to different photolysis payloads and even different classes of PPGs. Furthermore, analysis of the DFT-calculated energy barriers in the first singlet excited state reveals valuable insights into the important factors that determine photolysis efficiency. The strategy reported herein will enable the development of efficient PPGs tailored for many applications.


Assuntos
Cumarínicos , Cátions , Fotólise
8.
J Org Chem ; 87(21): 14319-14333, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285612

RESUMO

Tetra-ortho-fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility. Herein, we explored the effect of useful substituents, such as functionalization points, attachment handles, and water-solubilizing groups, on the photochemical properties of this photochromic system. In general, all the tested fluorinated azobenzenes exhibited favorable photochemical properties, such as high photostationary state distribution and long half-lives, both in organic solvents and in water. One of the azobenzene building blocks was functionalized with a trehalose group to enable the uptake of the photoswitch into mycobacteria. Following metabolic uptake and incorporation of the trehalose-based azobenzene in the mycobacterial cell wall, we demonstrated photoswitching of the azobenzene in the isolated total lipid extract.


Assuntos
Processos Fotoquímicos , Trealose , Compostos Azo/química , Água , Biologia
9.
Chem Soc Rev ; 50(22): 12377-12449, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590636

RESUMO

Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.

10.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628143

RESUMO

Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches. One of those approaches is photopharmacology, which uses light-controlled bioactive molecules to selectively activate drugs only at the intended space and time, thereby avoiding side effects outside of the irradiated area. Still, in the context of kinase inhibition, photopharmacology has thus far been rather unsuccessful in providing light-controlled drugs. Here, we present the discovery and optimisation of a photoswitchable inhibitor of casein kinase 1δ (CK1δ), important for the control of cell differentiation, circadian rhythm, DNA repair, apoptosis, and numerous other signalling processes. Varying the position at which the light-responsive azobenzene moiety has been introduced into a known CK1δ inhibitor, LH846, revealed the preferred regioisomer for efficient photo-modulation of inhibitory activity, but the photoswitchable inhibitor suffered from sub-optimal (photo)chemical properties. Replacement of the bis-phenyl azobenzene group with the arylazopyrazole moiety yielded a superior photoswitch with very high photostationary state distributions, increased solubility and a 10-fold difference in activity between irradiated and thermally adapted samples. The reasons behind those findings are explored with molecular docking and molecular dynamics simulations. Results described here show how the evaluation of privileged molecular architecture, followed by the optimisation of the photoswitchable unit, is a valuable strategy for the challenging design of the photoswitchable kinase inhibitors.


Assuntos
Caseína Quinase Idelta , Inibidores de Proteínas Quinases , Pirazóis , Apoptose/efeitos dos fármacos , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia
11.
Angew Chem Int Ed Engl ; 61(27): e202201308, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181979

RESUMO

Photolabile Protecting Groups (PPGs) are molecular tools used, for example, in photopharmacology for the activation of drugs with light, enabling spatiotemporal control over their potency. Yet, red-shifting of PPG activation wavelengths into the NIR range, which penetrates the deepest in tissue, has often yielded inefficient or insoluble molecules, hindering the use of PPGs in the clinic. To solve this problem, we report herein a novel concept in PPG design, by transforming clinically-applied NIR-dyes with suitable molecular orbital configurations into new NIR-PPGs using computational approaches. Using this method, we demonstrate how Cy7, a class of NIR dyes possessing ideal properties (NIR-absorption, high molecular absorptivity, excellent aqueous solubility) can be successfully converted into Cy7-PPG. We report a facile synthesis towards Cy7-PPG from accessible precursors and confirm its excellent properties as the most redshifted oxygen-independent NIR-PPG to date (λmax =746 nm).


Assuntos
Corantes , Oxigênio , Fotoquímica
12.
J Am Chem Soc ; 143(4): 2078-2087, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464888

RESUMO

CRY1 and CRY2 proteins are highly conserved components of the circadian clock that controls daily physiological rhythms. Disruption of CRY functions are related to many diseases, including circadian sleep phase disorder. Development of isoform-selective and spatiotemporally controllable tools will facilitate the understanding of shared and distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective compounds that enable light-dependent manipulation of the circadian clock. From phenotypic chemical screening in human cells, we identified benzophenone derivatives that lengthened the circadian period. These compounds selectively interacted with the CRY1 photolyase homology region, resulting in activation of CRY1 but not CRY2. The benzophenone moiety rearranged a CRY1 region called the "lid loop" located outside of the compound-binding pocket and formed a unique interaction with Phe409 in the lid loop. Manipulation of this key interaction was achieved by rationally designed replacement of the benzophenone with a switchable azobenzene moiety whose cis-trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous solutions and structurally mimicked the benzophenone unit, enabling reversible period regulation over days by cellular irradiation with visible light. This study revealed an unprecedented role of the lid loop in CRY-compound interaction and paves the way for spatiotemporal regulation of CRY1 activity by photopharmacology for molecular understanding of CRY1-dependent functions in health and disease.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Criptocromos/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Humanos , Luz
13.
J Am Chem Soc ; 143(3): 1513-1520, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33449695

RESUMO

Photopharmacology addresses the challenge of drug selectivity and side effects through creation of photoresponsive molecules activated with light with high spatiotemporal precision. This is achieved through incorporation of molecular photoswitches and photocages into the pharmacophore. However, the structural basis for the light-induced modulation of inhibitory potency in general is still missing, which poses a major design challenge for this emerging field of research. Here we solved crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors-azobenzene derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate. The essential role of glutamate transporters in the functioning of the central nervous system renders them potential therapeutic targets in the treatment of neurodegenerative diseases. The obtained structures provide a clear structural insight into the origins of photocontrol in photopharmacology and lay the foundation for application of photocontrolled ligands to study the transporter dynamics by using time-resolved X-ray crystallography.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Compostos Azo/metabolismo , Sistema X-AG de Transporte de Aminoácidos/química , Ácido Aspártico/efeitos da radiação , Compostos Azo/química , Compostos Azo/efeitos da radiação , Cristalografia por Raios X , Ligação Proteica , Estereoisomerismo , Thermococcus/química , Raios Ultravioleta
14.
J Am Chem Soc ; 143(27): 10041-10047, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181410

RESUMO

The development of very fast, clean, and selective methods for indirect labeling in PET tracer synthesis is an ongoing challenge. Here we present the development of an ultrafast photoclick method for the synthesis of short-lived 18F-PET tracers based on the photocycloaddition reaction of 9,10-phenanthrenequinones with electron-rich alkenes. The respective precursors are synthetically easily accessible and can be functionalized with various target groups. Using a flow photo-microreactor, the photoclick reaction can be performed in 60 s, and clinically relevant tracers for prostate cancer and bacterial infection imaging were prepared to demonstrate practicality of the method.

15.
Org Biomol Chem ; 19(10): 2312-2321, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33634812

RESUMO

Photopharmacology develops bioactive compounds whose pharmacological potency can be regulated by light. The concept relies on the introduction of molecular photoswitches, such as azobenzenes, into the structure of bioactive compounds, such as known enzyme inhibitors. Until now, the development of photocontrolled protein kinase inhibitors proved to be challenging for photopharmacology. Here, we describe a new class of heterocyclic azobenzenes based on the longdaysin scaffold, which were designed to photo-modulate the activity of casein kinase Iα (CKIα) in the context of photo-regulation of circadian rhythms. Evaluation of a set of photoswitchable longdaysin derivatives allowed for better insight into the relationship between substituents and thermal stability of the cis-isomer. Furthermore, our studies on the chemical stability of the azo group in this type of heterocyclic azobenzenes showed that they undergo a fast reduction to the corresponding hydrazines in the presence of different reducing agents. Finally, we attempted light-dependent modulation of CKIα activity together with the accompanying modulation of cellular circadian rhythms in which CKIα is directly involved. Detailed structure-activity relationship (SAR) analysis revealed a new potent reduced azopurine with a circadian period lengthening effect more pronounced than that of its parent molecule, longdaysin. Altogether, the results presented here highlight the challenges in the development of light-controlled kinase inhibitors for the photomodulation of circadian rhythms and reveal key stability issues for using the emerging class of heteroaryl azobenzenes in biological applications.


Assuntos
Compostos Azo/farmacologia , Caseína Quinase Ialfa/antagonistas & inibidores , Ritmo Circadiano/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Compostos Azo/química , Compostos Azo/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Isomerismo , Luz , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/efeitos da radiação , Purinas/química , Purinas/efeitos da radiação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/efeitos da radiação , Relação Estrutura-Atividade
16.
Angew Chem Int Ed Engl ; 60(48): 25290-25295, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34609785

RESUMO

Imines are photoaddressable motifs useful in the development of new generations of molecular switches, but their operation with low-energy photons and control over isomer stability remain challenging. Based on a computational design, we developed phenylimino indolinone (PIO), a green-light-addressable T-type photoswitch showing negative photochromism. The isomerization behavior of this photoactuator of the iminothioindoxyl (ITI) class was studied using time-resolved spectroscopies on time scales from femtoseconds to the steady state and by quantum-chemical analyses. The understanding of the isomerization properties and substituent effects governing these photoswitches opens new avenues for the development of novel T-type visible-light-addressable photoactuators based on C=N bonds.

17.
Chemistry ; 26(47): 10871-10881, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32315486

RESUMO

Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide-alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide-alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting 'F-PSMA-MIC' radiotracers (t1/2 =109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68 Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.


Assuntos
Alcinos/química , Azidas/química , Reação de Cicloadição , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Traçadores Radioativos , Humanos , Masculino
18.
Angew Chem Int Ed Engl ; 59(48): 21663-21670, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462976

RESUMO

Molecular photoswitches enable reversible external control of biological systems, nanomachines, and smart materials. Their development is driven by the need for low energy (green-red-NIR) light switching, to allow non-invasive operation with deep tissue penetration. The lack of clear design principles for the adaptation and optimization of such systems limits further applications. Here we provide a design rulebook for tetra-ortho-chloroazobenzenes, an emerging class of visible-light-responsive photochromes, by elucidating the role that substituents play in defining their key characteristics: absorption spectra, band overlap, photoswitching efficiencies, and half-lives of the unstable cis isomers. This is achieved through joint photochemical and theoretical analyses of a representative library of molecules featuring substituents of varying electronic nature. A set of guidelines is presented that enables tuning of properties to the desired application through informed photochrome engineering.

19.
J Am Chem Soc ; 141(36): 14356-14363, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469268

RESUMO

Self-assembly is a fundamental feature of biological systems, and control of such processes offers fascinating opportunities to regulate function. Fragaceatoxin C (FraC) is a toxin that upon binding to the surface of sphingomyelin-rich cells undergoes a structural metamorphosis, leading to the assembly of nanopores at the cell membrane and causing cell death. In this study we attached photoswitchable azobenzene pendants to various locations near the sphingomyelin binding pocket of FraC with the aim of remote controlling the nanopore assembly using light. We found several constructs in which the affinity of the toxin for biological membranes could be activated or deactivated by irradiation, thus enabling reversible photocontrol of pore formation. Notably, one construct was completely inactive in the thermally adapted state; it however induced full lysis of cultured cancer cells upon light irradiation. Selective irradiation also allowed isolation of individual nanopores in artificial lipid membranes. Photocontrolled FraC might find applications in photopharmacology for cancer therapeutics and has potential to be used for the fabrication of nanopore arrays in nanopore sensing devices, where the reconstitution, with high spatiotemporal precision, of single nanopores must be controlled.


Assuntos
Venenos de Cnidários/química , Nanoporos , Estrutura Molecular , Nanotecnologia , Processos Fotoquímicos , Estereoisomerismo
20.
J Am Chem Soc ; 141(18): 7376-7384, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30970210

RESUMO

Switches that can be actively steered by external stimuli along multiple pathways at the molecular level are the basis for next-generation responsive material systems. The operation of commonly employed molecular photoswitches revolves around one key structural coordinate. Photoswitches with functionalities that depend on and can be addressed along multiple coordinates would offer novel means to tailor and control their behavior and performance. The recently developed donor-acceptor Stenhouse adducts (DASAs) are versatile switches suitable for such applications. Their photochemistry is well understood, but is only responsible for part of their overall photoswitching mechanism. The remaining thermal switching pathways are to date unknown. Here, rapid-scan infrared absorption spectroscopy is used to obtain transient fingerprints of reactions occurring on the ground state potential energy surface after reaching structures generated through light absorption. The spectroscopic data are interpreted in terms of structural transformations using kinetic modeling and quantum chemical calculations. Through this combined experimental-theoretical approach, we are able to unravel the complexity of the multidimensional ground-state potential energy surface explored by the photoswitch and use this knowledge to predict, and subsequently confirm, how DASA switches can be guided along this potential energy surface. These results break new ground for developing user-geared DASA switches but also shed light on the development of novel photoswitches in general.


Assuntos
Teoria da Densidade Funcional , Cloreto de Metileno/química , Cinética , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Espectrofotometria Infravermelho , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA