Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164007

RESUMO

An on-chip asymmetric directional coupler (DC) can convert fundamental modes to higher-order modes and is one of the core components of mode-division multiplexing (MDM) technology. In this study, we propose that waveguides of the asymmetric DC can be trimmed by silicon ion implantation to tune the effective refractive index and facilitate mode conversion into higher-order modes. Through this method of tuning, transmission changes of up to 18 dB have been realized with one ion implantation step. In addition, adjusting the position of the ion implantation on the waveguide can provide a further degree of control over the transmission into the resulting mode. The results of this work present a promising new route for the development of high-efficiency, low-loss mode converters for integrated photonic platforms, and aim to facilitate the application of MDM technology in emerging photonic neuromorphic computing.

2.
Adv Mater ; 36(8): e2310596, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997459

RESUMO

Photonic integrated circuits (PICs) are revolutionizing the realm of information technology, promising unprecedented speeds and efficiency in data processing and optical communication. However, the nanoscale precision required to fabricate these circuits at scale presents significant challenges, due to the need to maintain consistency across wavelength-selective components, which necessitates individualized adjustments after fabrication. Harnessing spectral alignment by automated silicon ion implantation, in this work scalable and non-volatile photonic computational memories are demonstrated in high-quality resonant devices. Precise spectral trimming of large-scale photonic ensembles from a few picometers to several nanometres is achieved with long-term stability and marginal loss penalty. Based on this approach, spectrally aligned photonic memory and computing systems for general matrix multiplication are demonstrated, enabling wavelength multiplexed integrated architectures at large scales.

3.
Nat Commun ; 13(1): 5468, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115860

RESUMO

The development of high-strength metals has driven the endeavor of pushing the limit of grain size (d) reduction according to the Hall-Petch law. But the continuous grain refinement is particularly challenging, raising also the problem of inverse Hall-Petch effect. Here, we show that the nanograined metals (NMs) with d of tens of nanometers could be strengthened to the level comparable to or even beyond that of the extremely-fine NMs (d ~ 5 nm) attributing to the dislocation exhaustion. We design the Fe-Ni NM with intergranular Ni enrichment. The results show triggering of structural transformation at grain boundaries (GBs) at low temperature, which consumes lattice dislocations significantly. Therefore, the plasticity in the dislocation-exhausted NMs is suggested to be dominated by the activation of GB dislocation sources, leading to the ultra-hardening effect. This approach demonstrates a new pathway to explore NMs with desired properties by tailoring phase transformations via GB physico-chemical engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA