Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Blood ; 141(17): 2114-2126, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36720090

RESUMO

Activation of apoptosis in malignant cells is an established strategy for controlling cancer and is potentially curative. To assess the impact of concurrently inducing the extrinsic and intrinsic apoptosis-signaling pathways in acute myeloid leukemia (AML), we evaluated activity of the TRAIL receptor agonistic fusion protein eftozanermin alfa (eftoza; ABBV-621) in combination with the B-cell lymphoma protein-2 selective inhibitor venetoclax in preclinical models and human patients. Simultaneously stimulating intrinsic and extrinsic apoptosis-signaling pathways with venetoclax and eftoza, respectively, enhanced their activities in AML cell lines and patient-derived ex vivo/in vivo models. Eftoza activity alone or plus venetoclax required death receptor 4/5 (DR4/DR5) expression on the plasma membrane but was independent of TP53 or FLT3-ITD status. The safety/tolerability of eftoza as monotherapy and in combination with venetoclax was demonstrated in patients with relapsed/refractory AML in a phase 1 clinical trial. Treatment-related adverse events were reported in 2 of 4 (50%) patients treated with eftoza monotherapy and 18 of 23 (78%) treated with eftoza plus venetoclax. An overall response rate of 30% (7/23; 4 complete responses [CRs], 2 CRs with incomplete hematologic recovery, and 1 morphologic leukemia-free state) was reported in patients who received treatment with eftoza plus venetoclax and 67% (4/6) in patients with myoblasts positive for DR4/DR5 expression; no tumor responses were observed with eftoza monotherapy. These data indicate that combination therapy with eftoza plus venetoclax to simultaneously activate the extrinsic and intrinsic apoptosis-signaling pathways may improve clinical benefit compared with venetoclax monotherapy in relapsed/refractory AML with an acceptable toxicity profile. This trial was registered at www.clinicaltrials.gov as #NCT03082209.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/patologia , Compostos Bicíclicos Heterocíclicos com Pontes , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
BMC Cancer ; 17(1): 399, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578655

RESUMO

BACKGROUND: Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. METHODS: In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. RESULTS: Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. CONCLUSIONS: Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/genética , Leucemia/patologia , Linfoma/genética , Linfoma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
3.
Mol Cancer ; 14: 126, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134786

RESUMO

BACKGROUND: Defects in programmed cell death, or apoptosis, are a hallmark of cancer. The anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins, including BCL-2, BCL-X(L), and MCL-1 have been characterized as key survival factors in multiple cancer types. Because cancer types with BCL2 and MCL1 amplification are more prone to inhibition of their respectively encoded proteins, we hypothesized that cancers with a significant frequency of BCL2L1 amplification would have greater dependency on BCL-X(L) for survival. METHODS: To identify tumor subtypes that have significant frequency of BCL2L1 amplification, we performed data mining using The Cancer Genome Atlas (TCGA) database. We then assessed the dependency on BCL-X(L) in a panel of cell lines using a selective and potent BCL-X(L) inhibitor, A-1155463, and BCL2L1 siRNA. Mechanistic studies on the role of BCL-X(L) were further undertaken via a variety of genetic manipulations. RESULTS: We identified colorectal cancer as having the highest frequency of BCL2L1 amplification across all tumor types examined. Colorectal cancer cell lines with BCL2L1 copy number >3 were more sensitive to A-1155463. Consistently, cell lines with high expression of BCL-XL and NOXA, a pro-apoptotic protein that antagonizes MCL-1 activity were sensitive to A-1155463. Silencing the expression of BCL-X(L) via siRNA killed the cell lines that were sensitive to A-1155463 while having little effect on lines that were resistant. Furthermore, silencing the expression of MCL-1 in resistant cell lines conferred sensitivity to A-1155463, whereas silencing NOXA abrogated sensitivity. CONCLUSIONS: This work demonstrates the utility of characterizing frequent genomic alterations to identify cancer survival genes. In addition, these studies demonstrate the utility of the highly potent and selective compound A-1155463 for investigating the role of BCL-X(L) in mediating the survival of specific tumor types, and indicate that BCL-X(L) inhibition could be an effective treatment for colorectal tumors with high BCL-X(L) and NOXA expression.


Assuntos
Neoplasias Colorretais/genética , Genômica , Proteína bcl-X/genética , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Análise por Conglomerados , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
4.
Nature ; 435(7042): 677-81, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15902208

RESUMO

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/classificação , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Nitrofenóis , Paclitaxel/farmacologia , Piperazinas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Sulfonamidas , Taxa de Sobrevida
5.
Cancer Res ; 81(12): 3402-3414, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687950

RESUMO

TRAIL can activate cell surface death receptors, resulting in potent tumor cell death via induction of the extrinsic apoptosis pathway. Eftozanermin alfa (ABBV-621) is a second generation TRAIL receptor agonist engineered as an IgG1-Fc mutant backbone linked to two sets of trimeric native single-chain TRAIL receptor binding domain monomers. This hexavalent agonistic fusion protein binds to the death-inducing DR4 and DR5 receptors with nanomolar affinity to drive on-target biological activity with enhanced caspase-8 aggregation and death-inducing signaling complex formation independent of FcγR-mediated cross-linking, and without clinical signs or pathologic evidence of toxicity in nonrodent species. ABBV-621 induced cell death in approximately 36% (45/126) of solid cancer cell lines in vitro at subnanomolar concentrations. An in vivo patient-derived xenograft (PDX) screen of ABBV-621 activity across 15 different tumor indications resulted in an overall response (OR) of 29% (47/162). Although DR4 (TNFSFR10A) and/or DR5 (TNFSFR10B) expression levels did not predict the level of response to ABBV-621 activity in vivo, KRAS mutations were associated with elevated TNFSFR10A and TNFSFR10B and were enriched in ABBV-621-responsive colorectal carcinoma PDX models. To build upon the OR of ABBV-621 monotherapy in colorectal cancer (45%; 10/22) and pancreatic cancer (35%; 7/20), we subsequently demonstrated that inherent resistance to ABBV-621 treatment could be overcome in combination with chemotherapeutics or with selective inhibitors of BCL-XL. In summary, these data provide a preclinical rationale for the ongoing phase 1 clinical trial (NCT03082209) evaluating the activity of ABBV-621 in patients with cancer. SIGNIFICANCE: This study describes the activity of a hexavalent TRAIL-receptor agonistic fusion protein in preclinical models of solid tumors that mechanistically distinguishes this molecular entity from other TRAIL-based therapeutics.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Fator IX/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
ACS Med Chem Lett ; 12(7): 1108-1115, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267880

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a serine/threonine kinase involved in the regulation of transcription elongation. An inhibition of CDK9 downregulates a number of short-lived proteins responsible for tumor maintenance and survival, including the antiapoptotic BCL-2 family member MCL-1. As pan-CDK inhibitors under development have faced dosing and toxicity challenges in the clinical setting, we generated selective CDK9 inhibitors that could be amenable to an oral administration. Here, we report the lead optimization of a series of azaindole-based inhibitors. To overcome early challenges with promiscuity and cardiovascular toxicity, carboxylates were introduced into the pharmacophore en route to compounds such as 14 and 16. These CDK9 inhibitors demonstrated a reduced toxicity, adequate pharmacokinetic properties, and a robust in vivo efficacy in mice upon oral dosing.

7.
Bioorg Med Chem Lett ; 20(24): 7503-6, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21106457

RESUMO

We describe the development of a novel series of N-aryl-benzimidazolone HSP90 inhibitors (9) targeting the N-terminal ATP-ase site. SAR development was influenced by structure-based design based around X-ray structures of ligand bound HSP90 complexes. Lead compounds exhibited high binding affinities, ATP-ase inhibition and cellular client protein degradation.


Assuntos
Benzimidazóis/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Leukemia ; 34(6): 1646-1657, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31827241

RESUMO

MCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles that are distinct from related molecules that have been extensively studied clinically. Short-term treatment with A-1592668 rapidly downregulates RNA pol-II (Ser 2) phosphorylation resulting in the loss of MCL-1 protein and apoptosis in MCL-1-dependent hematologic tumor cell lines. This cell death could be attenuated by either inhibiting caspases or overexpressing BCL-2 protein. Synergistic cell killing was also observed between A-1592668 or the related analog A-1467729, and venetoclax in a number of hematologic cell lines and primary NHL patient samples. Importantly, the CDK9 inhibitor plus venetoclax combination was well tolerated in vivo and demonstrated efficacy superior to either agent alone in mouse models of lymphoma and AML. These data indicate that CDK9 inhibitors could be highly efficacious in tumors that depend on MCL-1 for survival or when used in combination with venetoclax in malignancies dependent on MCL-1 and BCL-2.


Assuntos
Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Hematológicas , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Camundongos , Sulfonamidas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062160

RESUMO

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

10.
Anticancer Drugs ; 20(6): 483-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19398903

RESUMO

ABT-751 is an orally bioavailable tubulin-binding agent that is currently under clinical development for cancer treatment. In preclinical studies, ABT-751 showed antitumor activity against a broad spectrum of tumor lines including those resistant to conventional chemotherapies. In this study, we investigated the antivascular properties of ABT-751 in a rat subcutaneous tumor model using dynamic contrast-enhanced magnetic resonance imaging. A single dose of ABT-751 (30 mg/kg, intravenously) induced a rapid, transient reduction in tumor perfusion. After 1 h, tumor perfusion decreased by 57% before recovering to near pretreatment levels within 6 h. In contrast, ABT-751 produced little change in muscle perfusion at either time point. To further elucidate mechanisms of drug action at the cellular level, we examined the effects of ABT-751 on endothelial cells using an in-vitro assay. ABT-751, at concentrations corresponding to plasma levels achieved in vivo, caused endothelial cell retraction and significant loss of microtubules within 1 h. The severity of these morphological changes was dose-dependent but reversible within 6 h after the discontinuation of the drug. Taken together, these results show that ABT-751 is a tubulin-binding agent with antivascular properties. Microtubule disruption and morphological changes in vascular endothelial cells may be responsible, at least in part, for the dysfunction of tumor blood vessels after ABT-751 treatment.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Sulfonamidas/uso terapêutico , Tubulina (Proteína)/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Transplante de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ligação Proteica , Ratos , Ratos Endogâmicos F344 , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
11.
Cancer Res ; 67(3): 1176-83, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283153

RESUMO

ABT-737 is a novel and potent Bcl-2 antagonist with single-agent activity against small-cell lung cancer (SCLC) cell lines. Here, we evaluated the contribution of Bcl-2 family members to the in vitro cellular response of several SCLC cell lines to ABT-737. Relatively higher levels of Bcl-2, Bcl-X(L), Bim and Noxa, and lower levels of Mcl-1 characterized naïve SCLC cell lines that were sensitive to ABT-737. Conversely, a progressive decrease in the relative levels of Bcl-2 and Noxa and a progressive increase in Mcl-1 levels characterized the increased resistance of H146 cells following chronic exposure to ABT-737. Knockdown of Mcl-1 with small interfering RNA sensitized two resistant SCLC cell lines H196 and DMS114 to ABT-737 by enhancing the induction of apoptosis. Likewise, up-regulation of Noxa sensitized H196 cells to ABT-737. Combination treatment with DNA-damaging agents was extremely synergistic with ABT-737 and was associated with the down-regulation of Mcl-1 and the up-regulation of Noxa, Puma, and Bim in H196 cells. Thus, SCLC cells sensitive to ABT-737 expressed the target proteins Bcl-2 and Bcl-X(L), whereas Mcl-1 and factors regulating Mcl-1 function seem to contribute to the overall resistance of SCLC cells to ABT-737. Overall, these observations provide further insight as to the mechanistic bases for ABT-737 efficacy in SCLC and will be helpful for profiling patients and aiding in the rational design of combination therapies.


Assuntos
Compostos de Bifenilo/farmacologia , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/administração & dosagem , Carboplatina/administração & dosagem , Carcinoma de Células Pequenas/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Sinergismo Farmacológico , Etoposídeo/administração & dosagem , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Sulfonamidas/administração & dosagem , Transfecção , Regulação para Cima
12.
Methods Mol Biol ; 1877: 163-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30536005

RESUMO

Flow cytometry is a powerful technique for the detection and quantification of cell surface and intracellular proteins. It enables the ability to measure the expression levels of specific proteins in a cell population of interest without the need to physically separate out the cells from within a heterogeneous population by using the appropriate cell-specific markers. It also requires fewer cells than other traditional techniques such as Western blotting. Here we describe a robust and reproducible method to measure the expression levels of the BCL-2 family members, BCL-2, BCL-XL, and MCL-1 by quantitative flow cytometry (QFCM) using validated antibodies.


Assuntos
Citometria de Fluxo/métodos , Proteínas Proto-Oncogênicas c-bcl-2/análise , Linhagem Celular , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/análise , Proteína bcl-X/metabolismo
13.
Mol Cancer Res ; 5(4): 331-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17426248

RESUMO

Cancer is a highly heterogeneous disease in terms of the genetic profile and the response to therapeutics. An early identification of a genomic marker in drug discovery may help select patients that would respond to treatment in clinical trials. Here we suggest coupling compound screening with comparative genomic hybridization analysis of the model systems for early discovery of genomic biomarkers. A Bcl-2 antagonist, ABT-737, has recently been discovered and shown to induce regression of solid tumors, but its activity is limited to a fraction of small-cell lung carcinoma (SCLC) models tested. We used comparative genomic hybridization on high-density single-nucleotide polymorphism genotyping arrays to carry out a genome-wide analysis of 23 SCLC cell lines sensitive and resistant to ABT-737. The screen revealed a number of novel recurrent gene copy number abnormalities, which were also found in an independent data set of 19 SCLC tumors and confirmed by real-time quantitative PCR. A previously unknown amplification was identified on 18q and associated with the sensitivity of SCLC cell lines to ABT-737 and another Bcl-2 antagonist. The region of gain contains Bcl-2 and NOXA, two apoptosis-related genes. Expression microarray profiling showed that the genes residing in the amplified region of 18q are also overexpressed in the sensitive lines relative to the resistant lines. Fluorescence in situ hybridization analysis of tumors revealed that Bcl-2 gain is a frequent event in SCLC. Our findings suggest that 18q21-23 copy number will be a clinically relevant predictor for sensitivity of SCLC to Bcl-2 family inhibitors. The 18q21-23 genomic marker may have a broader application in cancer because Bcl-2 is associated with apoptosis evasion and chemoresistance.


Assuntos
Carcinoma de Células Pequenas/genética , Aberrações Cromossômicas , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Hibridização de Ácido Nucleico/métodos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Linhagem Celular Tumoral , Cromossomos Humanos Par 18 , Análise por Conglomerados , Genes Neoplásicos , Marcadores Genéticos , Genoma , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética
14.
Cytometry B Clin Cytom ; 92(5): 331-339, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27177607

RESUMO

BACKGROUND: We have developed a quantitative fluorescence cytometry (QFCM) method that can be used to measure BCL-2 family member proteins in cell lines and clinical samples. We described the validation of antibodies, methods development and application of the assay. METHOD: We characterized and validated antibodies to BCL-2, BCL-XL , and MCL-1 in cell lines to confirm specificity for flow cytometry. Each protein was measured in a panel of leukemia/lymphoma cell lines and B-cells from chronic lymphocytic leukemia (CLL) patients treated with the BCL-2/BCL-XL inhibitor navitoclax. The cellular activity of various BCL-2 family member inhibitors alone and in combination was determined to demonstrate utility of our assay to correlate protein levels with efficacy. RESULTS: We identified antibodies that were highly specific for each protein. The expression profile in cell lines as determined by molecules of equivalent soluble fluorochrome was comparable to western blot. Using our assay, BCL-2, BCL-XL , and MCL-1 protein levels were shown to correlate with response to BCL-2 family inhibitors in vitro and could be measured in clinical samples. CONCLUSIONS: This method can quantify BCL-2 family members in a specific, highly reproducible and sensitive fashion, and requires fewer cells compared to western blot. It is particularly useful for identifying BCL-2, BCL-XL , and MCL-1 protein levels in a specific cell population within a heterogeneous population like those collected from CLL patients. These data show that our QFCM method can be used to facilitate the quantification and evaluation of biomarkers predictive of response in patients treated with BCL-2 family member inhibitors. © 2016 International Clinical Cytometry Society.


Assuntos
Antineoplásicos/uso terapêutico , Citometria de Fluxo/métodos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linhagem Celular Tumoral/citologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico
15.
Mol Cancer Ther ; 16(8): 1511-1520, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28468776

RESUMO

Ten percent to 15% of all lung cancers are small-cell lung cancer (SCLC). SCLC usually grows and metastasizes before it is diagnosed and relapses rapidly upon treatment. Unfortunately, no new targeted agent has been approved in the past 30 years for patients with SCLC. The BET (bromodomain and extraterminal) proteins bind acetylated histones and recruit protein complexes to promote transcription initiation and elongation. BET proteins have been shown to regulate expression of key genes in oncogenesis, such as MYC, CCND2, and BCL2L1 Here, we demonstrate that approximately 50% of SCLC cell lines are exquisitely sensitive to growth inhibition by the BET inhibitor, ABBV-075. The majority of these SCLC cell lines underwent apoptosis in response to ABBV-075 treatment via induction of caspase-3/7 activity. ABBV-075 enhanced the expression of proapoptotic protein BIM and downregulated antiapoptotic proteins BCL2 and BCLxl to a lesser extent. Furthermore, BET inhibition increased BCL2-BIM complex, thus priming the cells for apoptosis. Indeed, strong synergy was observed both in vitro and in vivo when cotreating the cells with BET inhibitor and the BH3-mimetic, BCL2 inhibitor venetoclax (ABT-199). ABBV-075 interaction with venetoclax positively correlated with BCL2 expression. Taken together, our studies provide a rationale for treating SCLC with BET and BCL2 inhibitors in tumors with high BCL2 protein expression. Mol Cancer Ther; 16(8); 1511-20. ©2017 AACR.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Piridonas/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Sulfonamidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Biomarcadores Tumorais/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridonas/farmacologia , Sulfonamidas/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/metabolismo
16.
Mol Cancer Ther ; 4(4): 562-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15827329

RESUMO

Microtubules are among the most successful targets for anticancer therapies and for the development of new anticancer drugs. A-432411 is a novel small molecule that destabilizes microtubules at high concentration and disrupts normal spindle formation at low concentration. A-432411 is an indolinone that is structurally different from other known synthetic microtubule inhibitors. This compound is efficacious against a variety of human cancer cell lines including drug-resistant HCT-15 that overexpresses Pgp170. Biochemical studies show that A-432411 competes with the colchicine-binding site on tubulin and inhibits microtubule polymerization. Fluorescence-activated cell sorting analysis indicates that A-432411 causes G2-M arrest and induces apoptosis. Cells treated with A-432411 have increased level of phospho-histone H3 at Ser10 and decreased level of phospho-cdc2 at Tyr15. Concurrently, securin and cyclin B1 expression levels remain the same, indicating the activation of the spindle checkpoint. Immunocytochemistry and fluorescence microscopy experiments reveal that 1 micromol/L A-432411 destabilizes microtubules in cells. At 0.1 micromol/L, the compound disrupts normal spindle pole formation possibly through stabilization of microtubule dynamic. Both structural and cellular properties of A-432411 make it an attractive candidate for further development.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Indóis/química , Pirróis/química , Pirróis/farmacologia , Fuso Acromático/efeitos dos fármacos , Antineoplásicos/farmacologia , Sítios de Ligação , Ligação Competitiva , Western Blotting , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Separação Celular , Colchicina/farmacologia , Ciclina B/química , Ciclina B1 , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Citometria de Fluxo , Células HeLa , Histonas/química , Humanos , Imuno-Histoquímica , Indóis/farmacologia , Microscopia de Fluorescência , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Químicos , Proteínas de Neoplasias/química , Securina , Fatores de Tempo , Tubulina (Proteína)/química , Tirosina/química
17.
Mol Cancer Ther ; 2(3): 227-33, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12657717

RESUMO

In this report, we describe the antitumor activity of A-289099, an indolyloxazoline derivative with antimitotic activity. A-289099 decreased the proliferation of a variety of cells with EC(50) values ranging from 5.1 to 12.8 nM in a P-glycoprotein-independent manner. In cultured cells, microtubules depolymerized in a time- and dose-dependent manner when treated with A-289099. In competition-binding assays, A-298099 competed with [(3)H]colchicine for binding to tubulin (K(i) = 0.65 micro M); however, it did not compete with [(3)H]paclitaxel or [(3)H]vincristine. There was an accumulation of cells in G(2)-M after treatment with A-289099 for 8 h and a subsequent increase in a subdiploid population and an increase in caspase-3 activity, indicative of apoptosis after treatment for 24 and 48 h. The antitumor activities of A-289099 were evaluated using the syngeneic M5076 murine reticulum sarcoma flank tumor model. Animals size-matched for established tumors ( approximately 350 mm(3)) were dosed p.o. (50 mg/kg every day) for 11 days starting on day 10 postinoculation. Tumors from A-289099-treated animals regressed throughout the 11-day dosing period with a percentage of the average treated-tumor-volume divided by the average vehicle-control-tumor-volume (% T/C) value of 11% after treatment for 7 days. Examination of tumor sections revealed an increase in internucleosomal DNA fragmentation or cell death within the central core after drug-treatment. A decrease in the perfusion of tumors was observed after drug-treatment that was localized primarily to the central core and closely associated with the regions of cell death. In summary, our findings indicate A-289099 is a promising, orally active tubulin-binding compound with antitumor activity in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Oxazóis/uso terapêutico , Sarcoma Experimental/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Administração Oral , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspase 3 , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Indóis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Oxazóis/metabolismo , Paclitaxel/farmacologia , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo , Vincristina/farmacologia
18.
Pharmacol Res Perspect ; 3(5): e00178, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516589

RESUMO

The Bcl-2 family inhibitors venetoclax and navitoclax demonstrated potent antitumor activity in chronic lymphocytic leukemia patients, notably in reducing marrow load and adenopathy. Subsequent trials with venetoclax have been initiated in non-Hodgkin's lymphoma and multiple myeloma patients. Traditional preclinical models fall short either in faithfully recapitulating disease progression within such compartments or in allowing the direct longitudinal analysis of systemic disease. We show that intravenous inoculation of engineered RS4;11 (acute lymphoblastic leukemia) and Granta 519 (mantle cell lymphoma) bioluminescent reporter cell lines result in tumor engraftment of bone marrow, with additional invasion of the central nervous system in the case of Granta 519. Importantly, apoptosis induction and response of these systemically engrafted tumors to Bcl-2 family inhibitors alone or in combination with standard-of-care agents could be monitored longitudinally with optical imaging, and was more accurately reflective of the observed clinical response.

19.
J Med Chem ; 58(5): 2180-94, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679114

RESUMO

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ligação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Sci Transl Med ; 7(279): 279ra40, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25787766

RESUMO

The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Administração Oral , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Benzotiazóis/química , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Docetaxel , Perfilação da Expressão Gênica , Granulócitos/metabolismo , Humanos , Isoquinolinas/química , Cinética , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Neutropenia/induzido quimicamente , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Taxoides/efeitos adversos , Trombocitopenia/induzido quimicamente , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA