Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415464

RESUMO

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Assuntos
Dominância Ocular , Córtex Visual , Animais , Ratos , Camundongos , Ratos Long-Evans , Camundongos Endogâmicos C57BL , Córtex Visual/fisiologia , Neurônios/fisiologia
2.
Cereb Cortex ; 33(16): 9599-9615, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415460

RESUMO

We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.


Assuntos
Corpos Geniculados , Córtex Visual , Ratos , Animais , Corpos Geniculados/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Campos Visuais , Ratos Wistar
3.
Vis Neurosci ; 39: E007, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321413

RESUMO

Studies in the greater galago have not provided a comprehensive description of the organization of eye-specific retino-geniculate-cortical projections to the recipient layers in V1. Here we demonstrate the overall patterns of ocular dominance domains in layers III, IV, and VI revealed following a monocular injection of the transneuronal tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). We also correlate these patterns with the array of cytochrome oxidase (CO) blobs in tangential sections through the unfolded and flattened cortex. In layer IV, we observed for the first time that eye-specific domains form an interconnected pattern of bands 200-250 µm wide arranged such that they do not show orientation bias and do not meet the V1 border at right angles, as is the case in macaques. We also observed distinct WGA-HRP labeled patches in layers III and VI. The patches in layer III, likely corresponding to patches of K lateral geniculate nucleus (LGN) input, align with layer IV ocular dominance columns (ODCs) of the same eye dominance and overlap partially with virtually all CO blobs in both hemispheres, implying that CO blobs receive K LGN input from both eyes. We further found that CO blobs straddle the border between layer IV ODCs, such that the distribution of CO staining is approximately equal over ipsilateral and contralateral ODCs. These results, together with studies showing that a high percentage of cells in CO blobs are monocular, suggest that CO blobs consist of ipsilateral and contralateral subregions that are in register with underlying layer IV ODCs of the same eye dominance. In macaques and humans, CO blobs are centered on ODCs in layer IV. Our finding that CO blobs in galago straddle the border of neighboring layer IV ODCs suggests that this novel feature may represent an alternative way by which visual information is processed by eye-specific modular architecture in mammalian V1.


Assuntos
Galagidae , Córtex Visual , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons , Córtex Visual/fisiologia , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre , Córtex Visual Primário , Corpos Geniculados/fisiologia , Galago , Macaca , Mamíferos
4.
Cereb Cortex ; 31(8): 3788-3803, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772553

RESUMO

The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.


Assuntos
Pulvinar/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Imuno-Histoquímica , Macaca mulatta , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Neuroimagem , Pulvinar/anatomia & histologia , Tálamo/fisiologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
5.
Proc Natl Acad Sci U S A ; 111(11): 4297-302, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591618

RESUMO

Ocular dominance columns (ODCs) have been well studied in the striate cortex (V1) of macaques, as well defined arrays of columnar structure that receive inputs from one eye or the other, whereas ODC expression seems more obscure in some New World primate species. ODCs have been identified by means of eye injections of transneuronal transporters and examination of cytochrome oxidase (CO) activity patterns after monocular enucleation. More recently, live-imaging techniques have been used to reveal ODCs. Here, we used the expression of immediate-early genes (IEGs), protooncogene, c-Fos, and zinc finger protein, Zif268, after monocular inactivation (MI) to identify ODCs in V1 of New World owl monkeys. Because IEG expression is more sensitive to activity changes than CO expression, it is capable of revealing activity maps in all layers throughout V1 and demonstrating brief activity changes within a couple of hours. Using IEGs, we not only revealed apparent ODCs in owl monkeys but also discovered a number of unique features of their ODCs. Distinct from those in macaques, these ODCs sometimes bridged to other columns in layer 4 (Brodmann layer 4C). CO blobs straddled ODC borders in the central visual field, whereas they centered ODC patches in the peripheral visual field. In one case, the ODC pattern continued into V2. Finally, an elevation of IEG expression in layer 4 (4C) was observed along ODC borders after only brief MI. Our data provide insights into the structure and variability of ODCs in primates and revive debate over the functions and development of ODCs.


Assuntos
Aotidae/genética , Aotidae/fisiologia , Dominância Ocular/fisiologia , Proteínas Imediatamente Precoces/genética , Córtex Visual/metabolismo , Animais , Aotidae/metabolismo , Digoxigenina , Processamento de Imagem Assistida por Computador , Proteínas Imediatamente Precoces/metabolismo , Hibridização In Situ , Microscopia
6.
Front Neural Circuits ; 18: 1402700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036421

RESUMO

The existence of cortical columns, regarded as computational units underlying both lower and higher-order information processing, has long been associated with highly evolved brains, and previous studies suggested their absence in rodents. However, recent discoveries have unveiled the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of Long-Evans rats. These domains exhibit continuity from layer 2 through layer 6, confirming their identity as genuine ODCs. Notably, ODCs are also observed in Brown Norway rats, a strain closely related to wild rats, suggesting the physiological relevance of ODCs in natural survival contexts, although they are lacking in albino rats. This discovery has enabled researchers to explore the development and plasticity of cortical columns using a multidisciplinary approach, leveraging studies involving hundreds of individuals-an endeavor challenging in carnivore and primate species. Notably, developmental trajectories differ depending on the aspect under examination: while the distribution of geniculo-cortical afferent terminals indicates matured ODCs even before eye-opening, consistent with prevailing theories in carnivore/primate studies, examination of cortical neuron spiking activities reveals immature ODCs until postnatal day 35, suggesting delayed maturation of functional synapses which is dependent on visual experience. This developmental gap might be recognized as 'critical period' for ocular dominance plasticity in previous studies. In this article, I summarize cross-species differences in ODCs and geniculo-cortical network, followed by a discussion on the development, plasticity, and evolutionary significance of rat ODCs. I discuss classical and recent studies on critical period plasticity in the venue where critical period plasticity might be a component of experience-dependent development. Consequently, this series of studies prompts a paradigm shift in our understanding of species conservation of cortical columns and the nature of plasticity during the classical critical period.


Assuntos
Dominância Ocular , Plasticidade Neuronal , Animais , Dominância Ocular/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Córtex Visual/crescimento & desenvolvimento , Ratos , Especificidade da Espécie , Roedores/fisiologia , Humanos , Período Crítico Psicológico , Vias Visuais/fisiologia , Vias Visuais/crescimento & desenvolvimento , Córtex Visual Primário/fisiologia , Ratos Long-Evans
7.
Front Neuroanat ; 18: 1389067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741760

RESUMO

Introduction: While the fovea on the retina covers only a small region of the visual field, a significant portion of the visual cortex is dedicated to processing information from the fovea being a critical center for object recognition, motion control, and visually guided attention. Despite its importance, prior functional imaging studies in awake monkeys often focused on the parafoveal visual field, potentially leading to inaccuracies in understanding the brain structure underlying function. Methods: In this study, our aim is to unveil the neuronal connectivity and topography in the foveal visual cortex in comparison to the parafoveal visual cortex. Using four different types of retrograde tracers, we selectively injected them into the striate cortex (V1) or V4, encompassing the regions between the fovea and parafovea. Results: V1 and V4 exhibited intense mutual connectivity in the foveal visual field, in contrast to the parafoveal visual field, possibly due to the absence of V3 in the foveal visual field. While previous live brain imaging studies failed to reveal retinotopy in the foveal visual fields, our results indicate that the foveal visual fields have continuous topographic connectivity across V1 through V4, as well as the parafoveal visual fields. Although a simple extension of the retinotopic isoeccentricity maps from V1 to V4 has been suggested from previous fMRI studies, our study demonstrated that V3 and V4 possess gradually smaller topographic maps compared to V1 and V2. Feedback projections to foveal V1 primarily originate from the infragranular layers of foveal V2 and V4, while feedforward projections to foveal V4 arise from both supragranular and infragranular layers of foveal V1 and V2, consistent with previous findings in the parafoveal visual fields. Discussion: This study provides valuable insights into the connectivity of the foveal visual cortex, which was ambiguous in previous imaging studies.

8.
Cereb Cortex ; 22(10): 2313-21, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22065864

RESUMO

A group of 5 genes, OCC1, testican-1, testican-2, 5-HT1B, and 5-HT2A, are selectively expressed in layer 4 (4C of Brodmann) of striate cortex (visual area V1) of both Old World macaques and New World marmoset monkeys. The expression of these genes is activity dependent, as expression is reduced after blocking retinal activity. Surprisingly, the pronounced expression pattern has not been found in rodents or carnivores. Thus, these genes may be highly expressed in V1 of some but perhaps not all primates. Here, we compared the gene expression in members of 3 major branches of primate evolution: prosimians, New World monkeys, and Old World monkeys. Although the expression pattern of 5-HT1B was well conserved, those of the other genes varied from the least distinct in prosimian galagos to successively more in New World owl monkeys, marmosets, squirrel monkeys, and Old World macaque monkeys. In owl monkeys, the expression of 5-HT2A was significantly reduced by monocular tetrodotoxin injection, while those of OCC1 and 5-HT1B were not. Thus, we propose that early primates had low levels of expression and higher levels emerged with anthropoid primates and became further enhanced in the Old World catarrhine monkeys that are more closely related to humans.


Assuntos
Aotus trivirgatus/metabolismo , Callithrix/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Galago/metabolismo , Macaca mulatta/metabolismo , Receptores de Serotonina/metabolismo , Córtex Visual/metabolismo , Animais , Expressão Gênica/fisiologia , Especificidade da Espécie
9.
J Comp Neurol ; 531(6): 681-700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740976

RESUMO

The pulvinar in the macaque monkey contains three divisions: the medial pulvinar (PM), the lateral pulvinar (PL), and the inferior pulvinar (PI). Anatomical studies have shown that connections of PM are preferentially distributed to higher association areas, those of PL are biased toward the ventral visual pathway, and those of PI are biased with the dorsal visual pathway. To study functional connections of the pulvinar at mesoscale, we used a novel method called INS-fMRI (infrared neural stimulation and functional magnetic resonance imaging). This method permits studies and comparisons of multiple pulvinar networks within single animals. As previously revealed, stimulations of different sites in PL and PI produced topographically organized focal activations in visual areas V1, V2, and V3. In contrast, PM stimulation elicited little or diffuse response. The relative activations of areas V1, V2, V3A, V3d, V3v, V4, MT, and MST revealed that connections of PL are biased to ventral pathway areas, and those of PI are biased to dorsal areas. Different statistical values of activated blood-oxygen-level-dependent responses produced the same center of activation, indicating stability of connectivity; it also suggests possible dynamics of broad to focal responses from single stimulation sites. These results demonstrate that infrared neural stimulation-induced connectivity is largely consistent with previous anatomical connectivity studies, thereby demonstrating validity of our novel method. In addition, it suggests additional interpretations of functional connectivity to complement anatomical studies.


Assuntos
Pulvinar , Córtex Visual , Animais , Macaca , Pulvinar/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
10.
Proc Natl Acad Sci U S A ; 106(29): 12151-5, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19581597

RESUMO

Visual inputs from the 2 eyes in most primates activate alternating bands of cortex in layer 4C of primary visual cortex, thereby forming the well-studied ocular dominance columns (ODCs). In addition, the enzymatic reactivity of cytochrome oxidase (CO) reveals "blob" structures within the supragranular layers of ODCs. Here, we present evidence for compartments within ODCs that have not been clearly defined previously. These compartments are revealed by the activity-dependent mRNA expression of immediate-early genes (IEGs), zif268 and c-fos, after brief periods of monocular inactivation (MI). After a 1-3-h period of MI produced by an injection of tetrodotoxin, IEGs were expressed in a patchy pattern that included infragranular layers, as well as supragranular layers, where they corresponded to the CO blobs. In addition, the expressions of IEGs in layer 4C were especially high in narrow zones along boundaries of ODCs, referred to here as the "border strips" of the ODCs. After longer periods of MI (>5 h), the border strips were no longer apparent. When either eyelid was sutured, changes in IEG expression were not evident in layer 4C; however, the patchy pattern of the expression in the infragranular and supragranular layers remained. These changes of IEG expression after MI indicate that cortical circuits involving the CO blobs of the supragranular layers include aligned groups of neurons in the infragranular layers and that the border strip neurons of layer 4C are highly active for a 3-h period after MI.


Assuntos
Dominância Ocular/genética , Regulação da Expressão Gênica , Genes Precoces , Visão Monocular/genética , Animais , Pálpebras/metabolismo , Pálpebras/patologia , Hibridização In Situ , Macaca , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suturas
11.
Neuroreport ; 33(12): 543-547, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35882010

RESUMO

Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception. To link anatomical abnormality and perceptual visual impairment of albinism, we compared the perceptual vision between the pigmented Long-Evans and the albino Wistar rats. We used the slow angled-descent forepaw grasping (SLAG) test. We hanged the rats in the air by their tails and slowly moved them around a safety bar so that they could see it. When the rats recognized the bar and try to grab it to escape, we counted the trial as 'positive', and we measured positive rates. We also measured the distance between the bar and their whiskers during the rats' initial grasping action, and evaluated type of action at the first contact to the bar. The positive-action rate in the Long-Evans rat group showed significantly higher than the Wistar rat group (0.85 ± 0.047, n = 10, vs. 0.29 ± 0.043, n = 10; P < 0.0001). Besides, when the action was positive, the distance between the bar and their whiskers was longer in the Long-Evans rat group than that in the Wistar rat group (117 ± 5.3 mm vs. 58.8 ± 4.6 mm; P < 0.0001). The Long-Evans rats grasped the bar more precisely than the Wistar rats. The pigmented Long-Evans rats have much better visual perception than the albino Wistar rats.


Assuntos
Albinismo , Ratos , Animais , Ratos Long-Evans , Ratos Wistar , Percepção Visual , Transtornos da Visão
12.
Front Neurosci ; 16: 891247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794953

RESUMO

In primate vision, the encoding of color perception arises from three types of retinal cone cells (L, M, and S cones). The inputs from these cones are linearly integrated into two cone-opponent channels (cardinal axes) before the lateral geniculate nucleus. In subsequent visual cortical stages, color-preferring neurons cluster into functional domains within "blobs" in V1, "thin/color stripes" in V2, and "color bands" in V4. Here, we hypothesize that, with increasing cortical hierarchy, the functional organization of hue representation becomes more balanced and less dependent on cone opponency. To address this question, we used intrinsic signal optical imaging in macaque V1, V2, and V4 cortices to examine the domain-based representation of specific hues (here referred to as "hue domains") in cone-opponent color space (4 cardinal and 4 intermediate hues). Interestingly, we found that in V1, the relative size of S-cone hue preference domain was significantly smaller than that for other hues. This notable difference was less prominent in V2, and, in V4 was virtually absent, resulting in a more balanced representation of hues. In V2, hue clusters contained sequences of shifting preference, while in V4 the organization of hue clusters was more complex. Pattern classification analysis of these hue maps showed that accuracy of hue classification improved from V1 to V2 to V4. These results suggest that hue representation by domains in the early cortical hierarchy reflects a transformation away from cone-opponency and toward a full-coverage representation of hue.

13.
Front Neuroanat ; 15: 751810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720891

RESUMO

Because at least some squirrel monkeys lack ocular dominance columns (ODCs) in the striate cortex (V1) that are detectable by cytochrome oxidase (CO) histochemistry, the functional importance of ODCs on stereoscopic 3-D vision has been questioned. However, conventional CO histochemistry or trans-synaptic tracer study has limited capacity to reveal cortical functional architecture, whereas the expression of immediate-early genes (IEGs), c-FOS and ZIF268, is more directly responsive to neuronal activity of cortical neurons to demonstrate ocular dominance (OD)-related domains in V1 following monocular inactivation. Thus, we wondered whether IEG expression would reveal ODCs in the squirrel monkey V1. In this study, we first examined CO histochemistry in V1 of five squirrel monkeys that were subjected to monocular enucleation or tetrodotoxin (TTX) treatment to address whether there is substantial cross-individual variation as reported previously. Then, we examined the IEG expression of the same V1 tissue to address whether OD-related domains are revealed. As a result, staining patterns of CO histochemistry were relatively homogeneous throughout layer 4 of V1. IEG expression was also moderate and homogeneous throughout layer 4 of V1 in all cases. On the other hand, the IEG expression was patchy in accordance with CO blobs outside layer 4, particularly in infragranular layers, although they may not directly represent OD clusters. Squirrel monkeys remain an exceptional species among anthropoid primates with regard to OD organization, and thus are potentially good subjects to study the development and function of ODCs.

14.
Front Neuroanat ; 15: 629473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679337

RESUMO

Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bß (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.

15.
Cereb Cortex ; 19(8): 1937-51, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19073625

RESUMO

We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including "blobs," SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity-dependent expression of these extracellular matrix glycoproteins.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Osteonectina/metabolismo , Proteoglicanas/metabolismo , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Chlorocebus aethiops , Feminino , Expressão Gênica , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Macaca , Masculino , Microinjeções , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Cereb Cortex ; 19(8): 1915-28, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19056862

RESUMO

To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs.


Assuntos
Neurônios/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Córtex Visual/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Chlorocebus aethiops , Eletrofisiologia , Expressão Gênica , Hibridização In Situ , Macaca , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estimulação Luminosa , Receptor 5-HT1B de Serotonina/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Agonistas do Receptor de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia
17.
J Chem Neuroanat ; 35(1): 146-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17950574

RESUMO

occ1/Follistatin-related protein (Frp) is strongly expressed in the primary visual cortex (V1) of macaque monkeys, and its expression is strongly down-regulated by intraocular tetrodotoxin (TTX) injection. The pronounced area selectivity of occ1/Frp mRNA expression occurs in macaques and marmosets, but not in mice, rabbits and ferrets, suggesting that occ1/Frp is an important clue to the evolution of the primate cerebral cortex. To further determine species differences, we examined the sensory-input dependency of occ1/Frp mRNA expression in mice in comparison with macaque V1. In macaque V1, occ1/Frp mRNA expression level significantly decreased with even 1-day monocular deprivation (MD) by TTX injection. In contrast to that in macaques, however, the occ1/Frp mRNA expression in the visual cortex in mice was not down-regulated by 1- to 7-day MD by TTX injection. Similarly, MD had no effect on occ1/Frp mRNA expression level in the dorsal lateral geniculate nucleus of mice. In addition, the extirpation of the cochlear or olfactory epithelium had no effect on occ1/Frp mRNA expression in either the cochlear nucleus or the olfactory bulb in mice. Thus, occ1/Frp mRNA expression is independent of sensory-input in mice. The results suggest that activity-dependent occ1/Frp mRNA expression is not common between mice and monkeys, and that primate V1 has acquired a unique gene regulatory mechanism that enables a rapid response to environmental changes. The characteristic feature of the activity dependency of occ1/Frp mRNA expression is discussed, in comparison with that of the expression of the immediate-early genes, c-fos and zif268.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica/genética , Plasticidade Neuronal/genética , Neurônios Aferentes/metabolismo , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Vias Auditivas/metabolismo , Vias Auditivas/fisiopatologia , Cegueira/genética , Cegueira/metabolismo , Cegueira/fisiopatologia , Denervação , Feminino , Corpos Geniculados/metabolismo , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurotoxinas , Condutos Olfatórios/metabolismo , Condutos Olfatórios/fisiopatologia , RNA Mensageiro/metabolismo , Células Ganglionares da Retina/metabolismo , Privação Sensorial/fisiologia , Especificidade da Espécie , Tetrodotoxina , Córtex Visual/fisiopatologia , Vias Visuais/fisiopatologia
18.
J Comp Neurol ; 526(18): 2955-2972, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004587

RESUMO

Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.


Assuntos
Corpos Geniculados/patologia , Corpos Geniculados/fisiopatologia , Privação Sensorial/fisiologia , Córtex Visual/patologia , Córtex Visual/fisiopatologia , Animais , Macaca , Plasticidade Neuronal/fisiologia , Vias Visuais/patologia , Vias Visuais/fisiopatologia
19.
J Comp Neurol ; 525(1): 151-165, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27276555

RESUMO

Tree shrews possess an unusual segregation of ocular inputs to sublayers rather than columns in the primary visual cortex (V1). In this study, the lateral geniculate nucleus (LGN), superior colliculus (SC), pulvinar, and V1 were examined for changes in c-FOS, an immediate-early gene, expression after 1 or 24 hours of monocular inactivation with tetrodotoxin (TTX) in tree shrews. Monocular inactivation greatly reduced gene expression in LGN layers related to the blocked eye, whereas normally high to moderate levels were maintained in the layers that receive inputs from the intact eye. The SC and caudal pulvinar contralateral to the blocked eye had greatly (SC) or moderately (pulvinar) reduced gene expressions reflective of dependence on the contralateral eye. c-FOS expression in V1 was greatly reduced contralateral to the blocked eye, with most of the expression that remained in upper layer 4a and lower 4b and lower layer 6 regions. In contrast, much of V1 contralateral to the active eye showed normal levels of c-FOS expression, including the inner parts of sublayers 4a and 4b and layers 2, 3, and 6. In some cases, upper layer 4a and lower 4b showed a reduction of gene expression. Layers 5 and sublayer 3c had normally low levels of gene expression. The results reveal the functional dominance of the contralateral eye in activating the SC, pulvinar, and V1, and the results from V1 suggest that the sublaminar organization of layer 4 is more complex than previously realized. J. Comp. Neurol. 525:151-165, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Privação Sensorial/fisiologia , Animais , Lateralidade Funcional/fisiologia , Expressão Gênica , Hibridização In Situ , Modelos Animais , Plasticidade Neuronal , Tetrodotoxina , Tupaiidae , Vias Visuais/metabolismo
20.
Brain Struct Funct ; 221(5): 2619-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26159773

RESUMO

Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.


Assuntos
Córtex Auditivo/metabolismo , Corpos Geniculados/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Córtex Auditivo/crescimento & desenvolvimento , Feminino , Corpos Geniculados/crescimento & desenvolvimento , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA