Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 299(6): 104807, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172730

RESUMO

Here, we report a bioluminescence resonance energy transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human transient receptor potential mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically relevant environment of lysosomes.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Canais de Potencial de Receptor Transitório , Humanos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Ligantes , Lisossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
2.
Chembiochem ; : e202400506, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923811

RESUMO

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.

3.
Bioorg Med Chem ; 98: 117561, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157838

RESUMO

The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.


Assuntos
Neoplasias , Pirimidinas , Humanos , MAP Quinase Quinase 3 , Pirimidinas/química , Relação Estrutura-Atividade , Fosforilação , Proliferação de Células , Inibidores de Proteínas Quinases/química
4.
Bioorg Med Chem Lett ; 60: 128588, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104640

RESUMO

The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer. Here, we report the development of dihydropyrrolopyridinone-based inhibitors for PKN2 and its closest homologue, PKN1, and their associated structure-activity relationship (SAR). Our studies identified a range of molecules with high potency exemplified by compound 8 with Ki = 8 nM for PKN2 and 14x selectivity over PKN1. Membrane permeability and target engagement for PKN2 were assessed by a NanoBRET cellular assay. Importantly, good selectivity across the wider human kinome and other kinase family members was achieved. These compounds provide strong starting points for lead optimization to PKN1/2 development compounds.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridonas/síntese química , Piridonas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 68: 128764, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504513

RESUMO

The discovery of potent and selective inhibitors for understudied kinases can provide relevant pharmacological tools to illuminate their biological functions. DYRK1A and DYRK1B are protein kinases linked to chronic human diseases. Current DYRK1A/DYRK1B inhibitors also antagonize the function of related protein kinases, such as CDC2-like kinases (CLK1, CLK2, CLK4) and DYRK2. Here, we reveal narrow spectrum dual inhibitors of DYRK1A and DYRK1B based on a benzothiophene scaffold. Compound optimization exploited structural differences in the ATP-binding sites of the DYRK1 kinases and resulted in the discovery of 3n, a potent and cell-permeable DYRK1A/DYRK1B inhibitor. This compound has a different scaffold and a narrower off-target profile compared to current DYRK1A/DYRK1B inhibitors. We expect the benzothiophene derivatives described here to aid establishing DYRK1A/DYRK1B cellular functions and their role in human pathologies.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Proteínas Tirosina Quinases/metabolismo , Tiofenos
6.
Arch Biochem Biophys ; 636: 28-41, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107586

RESUMO

Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1H, 13C and 31P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC50 values higher than 200 µM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with Kb values in range of 105-107 M-1, presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction.


Assuntos
Complexos de Coordenação , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Ferro , Rutênio , Inibidores da Topoisomerase I , Células A549 , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , DNA/química , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Humanos , Ferro/química , Ferro/farmacologia , Rutênio/química , Rutênio/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia
7.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780468

RESUMO

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pteridinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pteridinas/farmacologia , Pteridinas/química , Pteridinas/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Linhagem Celular Tumoral
8.
J Med Chem ; 65(4): 3173-3192, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35167750

RESUMO

Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Camundongos , Microssomos Hepáticos , Modelos Moleculares , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Curr Res Struct Biol ; 3: 165-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382010

RESUMO

Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus.

10.
Dalton Trans ; 48(39): 14885-14897, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31555783

RESUMO

Herein we discuss five ruthenium(ii) complexes with good cytotoxicity against cancer cells. These complexes are named [Ru(tzdt)(bipy)(dppb)]PF6 (1), [Ru(mmi)(bipy)(dppb)]PF6 (2), [Ru(dmp)(bipy)(dppb)]PF6 (3), [Ru(mpca)(bipy)(dppb)]PF6 (4) and [Ru(2mq)(bipy)(dppb)]PF6 (5), where tzdt = 1,3-thiazolidine-2-thione, mmi = mercapto-1-methyl-imidazole, dmp = 4,6-diamino-2-mercaptopyrimidine, mpca = 6-mercaptopyridine-3-carboxylic acid, 2mq = 2-mercapto-4(3H)-quinazolinone, bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. In vitro cell culture experiments revealed significant cytotoxic activity for 1-5 against MDA-MB-231, MCF-7, A549, DU-145 and HepG2 tumor cells, higher than that for the standard anticancer drug cisplatin. Compound/DNA interaction studies were carried out showing that 1-5 interact with DNA by electrostatic force of attraction or by hydrogen bonding. Moreover, the complexes interact, moderately and spontaneously, with human serum albumin (HSA) through the hydrophobic region. The five complexes are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (TopIB), and complex 1 is found to be the most efficient TopIB inhibitor among the five compounds. The inhibitory effect and analysis of different steps of the TopIB catalytic cycle indicate that complex 1 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and has no effect on the religation step. Complexes 1, 2 and 3 did not show mutagenic activity when they were evaluated by the cytokinesis-block micronucleus cytome assay in HepG2 cells and the Ames test in the presence and absence of mouse liver S9 metabolic activation. Therefore, it is necessary to perform further in-depth analysis of the therapeutic potential of these promising ruthenium complexes as anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Citoproteção/efeitos dos fármacos , DNA/metabolismo , Neoplasias/patologia , Compostos de Rutênio/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química , Humanos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos de Rutênio/química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas
11.
ACS Med Chem Lett ; 10(9): 1266-1271, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531195

RESUMO

Vaccinia-related kinases 1 and 2 (VRK1 and VRK2) are human Ser/Thr protein kinases associated with increased cell division and neurological disorders. Nevertheless, the cellular functions of these proteins are not fully understood. Despite their therapeutic potential, there are no potent and specific inhibitors available for VRK1 or VRK2. We report here the discovery and elaboration of an aminopyridine scaffold as a basis for VRK1 and VRK2 inhibitors. The most potent compound for VRK1 (26) displayed an IC50 value of 150 nM and was fairly selective in a panel of 48 human kinases (selectivity score S(50%) of 0.04). Differences in compound binding mode and substituent preferences between the two VRKs were identified by the structure-activity relationship combined with the crystallographic analysis of key compounds. We expect our results to serve as a starting point for the design of more specific and potent inhibitors against each of the two VRKs.

12.
Int J Biol Macromol ; 77: 68-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25783020

RESUMO

Topoisomerases IB are anticancer and antimicrobial targets whose inhibition by several natural and non-natural compounds has been documented. The inhibition effect by berberine and some 13-(di)phenylalkyl berberine derivatives has been tested towards human topoisomerase IB. Derivatives belonging to the 13-diphenylalkyl series display an efficient inhibition of the DNA relaxation and cleavage step, that increases upon pre-incubation with the enzyme. The religation step of the enzyme catalytic cycle is not affected by compounds and only slightly upon pre-incubation. The binding of the protein to the DNA substrate occurs also in the presence of the compounds, as monitored by a DNA shift assay, indicating that the compounds are not able to inhibit the formation of the enzyme-DNA complex but that they act as catalytic inhibitors.


Assuntos
Berberina/química , Berberina/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Sequência de Bases , Biocatálise/efeitos dos fármacos , Cloro/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Humanos , Cinética , Relação Estrutura-Atividade
13.
Adv Healthc Mater ; 3(9): 1426-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24652761

RESUMO

Here, the modulation of enzyme activity is presented by protein-imprinted nanoparticles produced using a solid-phase approach. Using trypsin as target, binding of the nanoparticles to the enzyme results in its inhibition or in stabilization, depending on the orientation of the immobilized enzyme used during imprinting.


Assuntos
Enzimas Imobilizadas/metabolismo , Impressão Molecular/métodos , Nanopartículas/química , Tripsina/metabolismo , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Enzimas Imobilizadas/química , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA