Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 117(10): 2109-2118, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849258

RESUMO

PURPOSE: Unique neuromuscular activation of the quadriceps femoris is observed during multi-joint leg extensions: lower activation of the biarticular rectus femoris (RF) than monoarticular vasti muscles. As one of the potential mechanisms for the lower RF activation, Ia afferent-mediated inhibitory connections between synergistic muscles and/or between agonist and antagonist muscles have been proposed. If this is the major factor, it is hypothesized that RF activation during multi-joint leg extensions increases after prolonged vibration to synergistic and/or antagonist muscles. This study tested the hypothesis. METHODS: Fourteen men exerted maximal voluntary isometric knee extension and flexion and performed submaximal parallel squat before and after one of the following three interventions on different days: prolonged vibration to the vastus lateralis (VL, synergist) or biceps femoris (BF, antagonist), or quiet sitting for 30 min. Muscle activations of the quadriceps femoris and hamstrings were determined using surface electromyography. RESULTS: After prolonged VL or BF vibration, VL (21%) or BF (30%) activation during isometric contractions significantly decreased, which was significantly correlated with the reduction of the maximal isometric knee extension or flexion strength. The magnitude of RF activation during squat was significantly lower than those of VL and the vastus medialis. No significant increase in RF activation during squat was observed after vibrations. CONCLUSION: The findings suggest that lower biarticular RF activation compared with the monoarticular vasti muscles during multi-joint exercises does not result from the modulation by peripheral inhibitory input from Ia afferents originating from synergist and/or antagonist muscles.


Assuntos
Exercício Físico , Músculo Quadríceps/fisiologia , Vibração , Adulto , Humanos , Contração Isométrica , Articulações/fisiologia , Masculino , Músculo Quadríceps/inervação , Distribuição Aleatória
2.
J Appl Physiol (1985) ; 123(2): 424-433, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572499

RESUMO

This study examined whether home-based, high-speed calf-raise training changes the rate of torque development (RTD) during plantar flexion contractions and balance performance in elderly men. Thirty-four healthy elderly men (73 ± 5 yr) were randomly assigned to a training or control group (n = 17 in each group). The subjects in the training group completed 8 wk (3 times/wk) of home-based bilateral calf-raise training using body mass. Before and after the intervention, RTD during plantar flexion contractions and center-of-pressure (COP) displacement during single-leg standing were measured. Surface electromyographic amplitude of the triceps surae and tibialis anterior during the strength and single-leg standing was measured. Clinical magnitude-based inferences were used to interpret the training effect, with the smallest worthwhile effect assumed to be 0.2 of the baseline SD. The peak RTD increased 21% (90% confidence limits, ±19%) relative to the control group, which was accompanied by corresponding changes of the medial gastrocnemius (MG) and soleus (SOL) activations. The effect on COP displacement was possibly trivial (0%, ±13%), whereas substantial reduction in the MG (-19%, ±15%) and SOL (-25%, ±13%) activations during standing was observed. Our findings indicate that calf-raise training at home, performed without special equipment or venue, induces a substantial increase in the plantar flexors' rapid force-generating capability and triceps surae activations. Although the training effect on standing balance performance was not substantial, observed changes in the triceps surae activations during standing are expected to contribute to future balance performance improvement.NEW & NOTEWORTHY Calf-raise training with the intent to move rapidly, without special equipment or venue, induces an improvement of explosive plantar flexion force, which is attributable to neuromuscular rather than musculotendinous adaptations. Although the training effect on balance performance was trivial, we found a sign of improvement (i.e., neuromuscular adaptations during standing). In conclusion, functional neuromuscular capacity can be enhanced by home-based calf-raise exercise in elderly men, which may protect against mobility loss with aging.


Assuntos
Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Idoso , Humanos , Contração Isométrica/fisiologia , Masculino , Ensino , Torque
3.
Age (Dordr) ; 38(5-6): 475-483, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581165

RESUMO

Plantar flexion strength and balance ability are considered to be crucial for avoiding falls. However, no clear relationship has been established between these two factors in elderly population. This study aimed to examine the association between plantar flexion strength and balance performance in elderly men and women. Forty-three men and 35 women aged over 65 years performed isometric plantar flexion as fast and hard as possible. From the time-torque curve, the rate of torque development in time intervals of 30, 50, 100, 150, and 200 ms from the onset of contraction was determined and normalized to peak torque. In addition, the center of pressure displacement during single-leg standing was calculated and normalized to height. When the data were collapsed over sexes, the normalized rate of torque development was negatively correlated with the normalized center of pressure displacement, except for the time interval of 200 ms. By sex, regardless of the time interval, there was a negative correlation between the normalized rate of torque development and the normalized center of pressure displacement in the elderly men but not in the elderly women. No correlation was seen between the peak torque and normalized center of pressure displacement in either pooled or separated data. The findings suggest that the capability of rapid force production rather than maximal force production of the plantar flexion is important for balance ability in elderly men, but this capability may not be relevant in elderly women.


Assuntos
Envelhecimento/fisiologia , Força Muscular/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Acelerometria , Fatores Etários , Idoso , Exercício Físico , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Dinamômetro de Força Muscular , Fatores de Risco , Torque , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA