Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Plant J ; 109(5): 1168-1182, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902177

RESUMO

Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.


Assuntos
Oryza , Triticum , Ácido Azetidinocarboxílico/análogos & derivados , Pão/análise , Grão Comestível/metabolismo , Farinha/análise , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Triticum/genética , Triticum/metabolismo , Zinco/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971890

RESUMO

Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.

3.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688291

RESUMO

Zinc serves critical catalytic, regulatory, and structural roles. Hosts and their resident gut microbiota both require zinc, leading to competition, where a balance must be maintained. This systematic review examined evidence on dietary zinc and physiological status (zinc deficiency or high zinc/zinc overload) effects on gut microbiota. This review was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and registered in PROSPERO (CRD42021250566). PubMed, Web of Science, and Scopus databases were searched for in vivo (animal) studies, resulting in eight selected studies. Study quality limitations were evaluated using the SYRCLE risk of bias tool and according to ARRIVE guidelines. The results demonstrated that zinc deficiency led to inconsistent changes in α-diversity and short-chain fatty acid production but led to alterations in bacterial taxa with functions in carbohydrate metabolism, glycan metabolism, and intestinal mucin degradation. High dietary zinc/zinc overload generally resulted in either unchanged or decreased α-diversity, decreased short-chain fatty acid production, and increased bacterial metal resistance and antibiotic resistance genes. Additional studies in human and animal models are needed to further understand zinc physiological status effects on the intestinal microbiome and clarify the applicability of utilizing the gut microbiome as a potential zinc status biomarker.

4.
Crit Rev Food Sci Nutr ; 63(21): 4966-4978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34847784

RESUMO

Biofortified foods are a new approach to increase minerals in the diet, and evidence suggests that zinc (Zn) biofortification can improve Zn physiological status in humans. This systematic review aimed to answer the question: "What are the effects of the consumption of Zn biofortified foods on Zn status in humans?". This review was conducted according to PRISMA guidelines and registered in PROSPERO (CRD42021250566). PubMed, Cochrane, Scopus and Science Direct databases were searched for studies that evaluated the effects of Zn biofortified foods on Zn absorption. Of 4282 articles identified, nine remained after inclusion/exclusion criteria were applied. Limitations in study quality, external and internal validity (bias/confounding), and study power were evaluated. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Of the nine articles included, five observed an increase in total Zn absorption, and one showed that Zn participated in the conversion of linoleic acid to dihomo-γ-linolenic acid. By increasing the amount of Zn in the food, Zn biofortification can reduce the phytate:Zn molar ratio and improve Zn absorption in humans. More studies are needed to clarify what portion of Zn biofortified foods/day is needed to achieve a significant effect on Zn status.


Assuntos
Alimentos Fortificados , Zinco , Humanos , Produtos Agrícolas , Biofortificação , Dieta
5.
Crit Rev Food Sci Nutr ; : 1-11, 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37574588

RESUMO

Dietary proteins serve as sources of exogenous peptides, after being released from the protein and absorbed, the bioactive peptides can perform several functions in the body. The objective of the current systematic review is to answer the question "How does food derived bioactive peptides can impact on gut health and inflammatory mediators in vivo?" The search was performed at PubMed, Cochrane, and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. The data analysis was conducted following the PRISMA guidelines. Eleven studies performed in animal models evaluating bioactive peptides derived from animal and plant sources were included and evaluated for limitations in heterogeneity, methodologies, absence of information regarding the allocation process, and investigators' blinding. The bioactive peptides demonstrated potential positive effects on inflammation and gut health. The main results identified were a reduction in TNF-α, NF-κB, and TLR4, an improvement in IgA production and in intestinal morphology, with an increase in villi surface area and goblet cell diameter, and Shannon and Simpson indexes were also increased. However, more in vivo studies are still necessary to better elucidate the anti-inflammatory activity and mechanisms by which peptides regulate gut health. PROSPERO (CRD42023416680).

6.
Crit Rev Food Sci Nutr ; 63(27): 9017-9032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35403512

RESUMO

The benefits of dietary fiber on intestinal health have been well established. However, there is no consensus on the dietary fiber effects on mineral absorption. The objective of this systematic review is to discuss the evidence on the dietary fiber effects on iron absorption and iron status-related biomarkers. A comprehensive search of 3 databases: PubMed, Scopus and Web of Science was carried out. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, and a total of 32 studies were included with 9 of them clinical studies and 23 in vivo. The studies included assessment of dietary fiber in the form of fructo-oligosaccharides, galacto-oligosaccharides, inulin, pectin, guar gum, oligofructose, xylo-oligosaccharides, and mannan-oligosaccharide. Hemoglobin (n = 21) and fractional iron absorption (n = 6) were the most frequently reported outcomes. The results showed no significant correlations between consumption of dietary fiber to iron absorption/status-related biomarkers. However, the current evidence may not be substantial to invalidate the recommendation of dietary fiber as an agent to improve dietary iron bioavailability, and absorption. In conclusion, there is a need to conduct further clinical trials with long dietary fiber intervention focusing on population at high risk for iron deficiency.


Assuntos
Ferro , Oligossacarídeos , Oligossacarídeos/farmacologia , Intestinos , Fibras na Dieta , Inulina/farmacologia , Biomarcadores , Absorção Intestinal
7.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450500

RESUMO

Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (ß-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.

8.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880429

RESUMO

Despite enormous research efforts, a sufficiently sensitive and reliable biomarker for the assessment of zinc (Zn) status has not been identified to date. Zn affects fatty acid metabolism and alters the activity of certain desaturases; thus, desaturase activity has been proposed as a potential new biomarker of Zn status. This systematic review complied and assessed studies that examined changes in fatty acid desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) activities in relation to modifications in dietary Zn intake. A systematic search was performed in PubMed, Web of Science, Scopus, Web of Knowledge, and Central with strictly defined search, inclusion, and exclusion criteria. Twenty-one studies were included, 8 animal and 13 human trials (5 randomized controlled trials, two non-randomized controlled trials, and 6 cross-sectional studies). This systematic review was performed using PRISMA guidelines and where feasible a random-effects meta-analysis was conducted. No significant correlation was seen between the delta 6 desaturase and Zn status (-0.0958, 95% CIs (-0.2912; 0.1074), p = 0.2928). Delta 6 desaturase seems to respond in a greater magnitude than Zn status to Zn-containing interventions (the standardized mean difference for delta 6 desaturase was -0.6052, 95% CIs (-2.7162; 1.5058), p = 0.4289, while for plasma/serum Zn it was 0.0319, 95% CIs (-0.9133; 0.9770), p = 0.9213). Finally, two separate meta-analyses on same studies that assessed the correlations between LA:DGLA and Zn intake and Zn status and Zn intake revealed that the magnitude of correlations was only slightly different (the pooled correlation coefficient between the LA:DGLA ratio and Zn intake had a value of -0.1050, 95% CIs (-0.5356; 0.3690), p = 0.454, while between plasma Zn and Zn intake had a value of -0.0647, 95% CIs (-0.4224; 0.3106), p = 0.5453). According to the descriptive analysis, the magnitude of variation in desaturase activities in response to Zn intake was not consistent among studies, FADS1 and FADS2 activity corresponded to dietary Zn manipulations, both in animals and humans. A plausible explanation for this observation might be the difference between the studies in study populations, types of dietary interventions, study durations, etc. In addition, several potential confounders and covariates are identified from the qualitative synthesis, such as gender, age, the type of fat provided within the dietary intervention, the size of Zn particles, among others. Further high-quality studies are needed to additionally clarify the suggested associations and applicability of utilizing fatty acid desaturase activities as Zn status biomarkers.

9.
Small ; 16(21): e2000601, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32338455

RESUMO

Nanoparticles (NPs) are used in food packaging and processing and have become an integral part of many commonly ingested products. There are few studies that have focused on the interaction between ingested NPs, gut function, the mucus layer, and the gut microbiota. In this work, an in vitro model of gastrointestinal (GI) tract is used to determine whether, and how, the mucus layer is affected by the presence of Gram-positive, commensal Lactobacillus rhamnosus; Gram-negative, opportunistic Escherichia coli; and/or exposure to physiologically relevant doses of pristine or digested TiO2 NPs. Caco-2/HT29-MTX-E12 cell monolayers are exposed to physiological concentrations of bacteria (expressing fluorescent proteins) and/or TiO2 nanoparticles for a period of 4 h. To determine mucus thickness and composition, cell monolayers are stained with alcian blue, periodic acid schiff, or an Alexa Fluor 488 conjugate of wheat germ agglutinin. It is found that the presence of both bacteria and nanoparticles alter the thickness and composition of the mucus layer. Changes in the distribution or pattern of mucins can be indicative of pathological conditions, and this model provides a platform for understanding how bacteria and/or NPs may interact with and alter the mucus layer.


Assuntos
Bactérias , Microbioma Gastrointestinal , Muco , Nanopartículas , Titânio , Bactérias/efeitos dos fármacos , Células CACO-2 , Linhagem Celular , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Células HT29 , Humanos , Muco/química , Muco/efeitos dos fármacos , Muco/microbiologia , Nanopartículas/toxicidade , Titânio/toxicidade
10.
Plant Biotechnol J ; 17(8): 1514-1526, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623558

RESUMO

Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.


Assuntos
Farinha/análise , Ferro da Dieta/análise , Engenharia Metabólica , Triticum/química , Alquil e Aril Transferases/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Disponibilidade Biológica , Grão Comestível/química , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas/química , Triticum/genética
11.
Crit Rev Food Sci Nutr ; 58(13): 2136-2146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28414527

RESUMO

Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe). Therefore, assessing iron and zinc bioavailability in biofortified crops is imperative to evaluate the efficacy of breeding programs. This review aimed to investigate the advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. In vitro, animal and isotopic human studies have shown high iron and zinc bioavailability in biofortified staple food crops. Human studies provide direct knowledge regarding the effectiveness of biofortification, however, human studies are time consuming and are more expensive than in vitro and animal studies. Moreover, in vitro studies may be a useful preliminary screening method to identify promising plant cultivars, however, these studies cannot provide data that are directly applicable to humans. None of these methods provides complete information regarding mineral bioavailability, thus, a combination of these methods should be the most appropriate strategy to investigate the effectiveness of zinc and iron biofortification programs.


Assuntos
Biofortificação , Alimentos Fortificados , Ferro/farmacocinética , Avaliação de Programas e Projetos de Saúde , Zinco/farmacocinética , Disponibilidade Biológica , Humanos
12.
Nutr J ; 14: 11, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25614193

RESUMO

BACKGROUND: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb)-synthesis. Pearl millet (PM) is common in West-Africa and India, and is well adapted to growing areas characterized by drought, low-soil fertility, and high-temperature. Because of its tolerance to difficult growing conditions, it can be grown in areas where other cereal crops, such as maize, would not survive. It accounts for approximately 50% of the total world-production of millet. Given the widespread use of PM in areas of the world affected by Fe-deficiency, it is important to establish whether biofortified-PM can improve Fe-nutriture. METHODS: Two isolines of PM, a low-Fe-control ("DG-9444", Low-Fe) and biofortified ("ICTP-8203 Fe",High-Fe) in Fe (26 µg and 85 µg-Fe/g, respectively) were used. PM-based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (Fe concentrations were 22.1±0.52 and 78.6±0.51 µg-Fe/g for the Low-Fe and High-Fe diets, respectively). For 6-weeks, Hb, feed-consumption and body-weight were measured (n = 12). RESULTS: Improved Fe-status was observed in the High-Fe group, as suggested by total-Hb-Fe values (15.5±0.8 and 26.7±1.4 mg, Low-Fe and High-Fe respectively, P<0.05). DMT-1, DcytB, and ferroportin mRNA-expression was higher (P<0.05) and liver-ferritin was lower (P>0.05) in the Low-Fe group versus High-Fe group. In-vitro comparisons indicated that the High-Fe PM should provide more absorbable-Fe; however, the cell-ferritin values of the in-vitro bioassay were very low. Such low in-vitro values, and as previously demonstrated, indicate the presence of high-levels of polyphenolic-compounds or/and phytic-acid that inhibit Fe-absorption. LC/MS-analysis yielded 15 unique parent aglycone polyphenolic-compounds elevated in the High-Fe line, corresponding to m/z = 431.09. CONCLUSIONS: The High-Fe diet appeared to deliver more absorbable-Fe as evidenced by the increased Hb and Hb-Fe status. Results suggest that some PM varieties with higher Fe contents also contain elevated polyphenolic concentrations, which inhibit Fe-bioavailability. Our observations are important as these polyphenols-compounds represent potential targets which can perhaps be manipulated during the breeding process to yield improved dietary Fe-bioavailability. Therefore, the polyphenolic and phytate profiles of PM must be carefully evaluated in order to further improve the nutritional benefit of this crop.


Assuntos
Ferro da Dieta/administração & dosagem , Ferro/análise , Ferro/farmacocinética , Pennisetum/química , Polifenóis/análise , Sementes/química , África Ocidental , Ração Animal/análise , Animais , Disponibilidade Biológica , Células CACO-2 , Galinhas , Ferritinas/análise , Ferritinas/biossíntese , Alimentos Fortificados , Hemoglobinas/análise , Hemoglobinas/biossíntese , Humanos , Índia , Deficiências de Ferro , Fígado/química , Modelos Animais , Necessidades Nutricionais , Ácido Fítico/análise
13.
Nutr J ; 13: 58, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24924421

RESUMO

BACKGROUND: Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). METHODS: In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. RESULTS: The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. CONCLUSIONS: In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies.


Assuntos
Deficiências de Ferro , Ferro/metabolismo , Prebióticos , Animais , Bifidobacterium/efeitos dos fármacos , Disponibilidade Biológica , Células CACO-2 , Galinhas , Ferritinas , Humanos , Intestinos/microbiologia , Ácido Fítico/administração & dosagem , Triticum/metabolismo
14.
Nutr J ; 13: 28, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24669764

RESUMO

BACKGROUND: Our objective was to determine if a biofortified variety of black bean can provide more bioavailable-iron (Fe) than a standard variety. Two lines of black beans (Phaseolus-vulgaris L.), a standard (DOR500; 59µg Fe/g) and biofortified (MIB465; 88µg Fe/g) were used. The DOR500 is a common commercial variety, and the MIB465 is a line developed for higher-Fe content. Given the high prevalence of Fe-deficiency anemia worldwide, it is important to determine if Fe-biofortified black beans can provide more absorbable-Fe. METHODS: Black bean based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (dietary Fe-concentrations were 39.4±0.2 and 52.9±0.9 mg/kg diet, standard vs. biofortified, respectively). Birds (n=14) were fed the diets for 6-weeks. Hemoglobin-(Hb), liver-ferritin and Fe-related transporter/enzyme gene-expression were measured. Hemoglobin-maintenance-efficiency and total-body-Hb-Fe values were used to estimate Fe-bioavailability. RESULTS: Hemoglobin-maintenance-efficiency values were higher (P<0.05) in the group consuming the standard-Fe beans on days 14, 21 and 28; indicating a compensatory response to lower dietary-Fe. Final total-Hb-Fe body content was higher in the biofortified vs. the standard group (26.6±0.9 and 24.4±0.8 mg, respectively; P<0.05). There were no differences in liver-ferritin or in expression of DMT-1, Dcyt-B, and ferroportin. In-vitro Fe-bioavailability assessment indicated very low Fe-bioavailability from both diets and between the two bean varieties (P>0.05). Such extremely-low in-vitro Fe-bioavailability measurement is indicative of the presence of high levels of polyphenolic-compounds that may inhibit Fe-absorption. High levels of these compounds would be expected in the black bean seed-coats. CONCLUSIONS: The parameters of Fe-status measured in this study indicate that only a minor increase in absorbable-Fe was achieved with the higher-Fe beans. The results also raise the possibility that breeding for increased Fe-concentration elevated the levels of polyphenolic-compounds that can reduce bean Fe-bioavailability, although the higher levels of polyphenolics in the higher-Fe beans may simply be coincidental or an environmental effect. Regardless, Fe-biofortified beans remain a promising vehicle for increasing intakes of bioavailable-Fe in human populations that consume high levels of these beans as a dietary staple, and the bean polyphenol profile must be further evaluated and modified if possible in order to improve the nutritional quality of higher-Fe beans.


Assuntos
Ferro/administração & dosagem , Ferro/metabolismo , Phaseolus/metabolismo , Polifenóis/farmacologia , Animais , Disponibilidade Biológica , Cruzamento , Células CACO-2 , Galinhas , Ferritinas/biossíntese , Hemoglobinas/biossíntese , Humanos , Absorção Intestinal/efeitos dos fármacos , Phaseolus/genética
15.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931211

RESUMO

Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.


Assuntos
Galinhas , Microbioma Gastrointestinal , Ferro , Pisum sativum , Prebióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/metabolismo , Extratos Vegetais/farmacologia , Intestinos/microbiologia , Sementes , Bifidobacterium/metabolismo , Cotilédone , Lactobacillus/metabolismo , Proteínas de Transporte de Cátions
16.
J Chem Ecol ; 39(3): 447-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23456343

RESUMO

Despite widespread consumption of soil among animals, the role of geophagy in health maintenance remains an enigma. It has been hypothesized that animals consume soil for supplementation of minerals and protection against toxins. Most studies determine only the total elemental composition of soil, which may not reflect the amount of minerals available to the consumer. Our aim was to test these hypotheses by evaluating the bioavailability of iron in soil consumed by chacma baboons, using a technique that simulates digestion and adsorption. Our results indicate that, despite variation in absolute iron concentration of soil samples, actual iron bioavailability was low while clay content was quite high. This suggests that iron supplementation is unlikely to be the primary motivation for geophagy in this population, and that detoxification is a plausible explanation. This study demonstrates that more research on bioavailability and clay composition is needed to determine the role geophagy plays in health maintenance.


Assuntos
Silicatos de Alumínio/análise , Ferro/análise , Papio ursinus/metabolismo , Solo/química , Silicatos de Alumínio/farmacocinética , Animais , Disponibilidade Biológica , Células CACO-2 , Argila , Humanos , Ferro/farmacocinética
17.
Nutr J ; 12: 3, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23286295

RESUMO

BACKGROUND: Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. METHODS: We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. RESULTS: DMT-1, DcytB and ferroportin expressions were higher (P<0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P<0.05), indicating greater Fe absorption from the diet and improved Fe status. CONCLUSIONS: We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency.


Assuntos
Embaralhamento de DNA , Alimentos Fortificados , Ferro da Dieta/farmacocinética , Zea mays/química , Anemia Ferropriva , Animais , Disponibilidade Biológica , Células CACO-2 , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Galinhas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Dieta , Compostos Férricos/farmacocinética , Expressão Gênica , Hemoglobinas/análise , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ácido Fítico/administração & dosagem , Ácido Fítico/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zea mays/genética
18.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111174

RESUMO

This monograph, based on a Special Issue of Nutrients, contains 16 manuscripts-2 review manuscripts and 14 original research manuscripts-that reflect the wide spectrum of currently conducted research in the field of Emerging Dietary Bioactives in Health and Disease [...].


Assuntos
Dieta , Nutrientes
19.
Nutrients ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375657

RESUMO

Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Galinhas/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Mucosa Intestinal/metabolismo
20.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36829990

RESUMO

Among food additive metal oxide nanoparticles (NP), titanium dioxide (TiO2) and silicon dioxide (SiO2) are commonly used as food coloring or anti-caking agents, while zinc oxide (ZnO) and iron oxide (Fe2O3) are added as antimicrobials and coloring agents, respectively, and can be used as micronutrient supplements. To elucidate potential perturbations associated with NP consumption on gastrointestinal health and development, this in vivo study utilized the Gallus gallus (broiler chicken) intraamniotic administration to assess the effects of physiologically relevant concentrations of food-grade metal oxide NP on brush border membrane (BBM) functionality, intestinal morphology and intestinal microbial populations in vivo. Six groups with 1 mL injection of the following treatments were utilized: non-injected, 18 MΩ DI H2O; 1.4 × 10-6 mg TiO2 NP/mL, 2.0 × 10-5 mg SiO2 NP/mL, 9.7 × 10-6 mg ZnO NP/mL, and 3.8 × 10-4 mg Fe2O3 NP/mL (n = 10 per group). Upon hatch, blood, cecum, and duodenum were collected to assess mineral (iron and zinc) metabolism, BBM functional, and pro-inflammatory-related protein gene expression, BBM morphometric analysis, and the relative abundance of intestinal microflora. Food additive NP altered mineral transporter, BBM functionality, and pro-inflammatory cytokine gene expression, affected intestinal BBM development and led to compositional shifts in intestinal bacterial populations. Our results suggest that food-grade TiO2 and SiO2 NP have the potential to negatively affect intestinal functionality; food-grade ZnO NP exposure effects were associated with supporting intestinal development or compensatory mechanisms due to intestinal damage, and food-grade Fe2O3 NP was found to be a possible option for iron fortification, though with potential alterations in intestinal functionality and health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA