Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
MedComm (2020) ; 2(2): 175-206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34766141

RESUMO

Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein-Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.

2.
ACS Nano ; 14(3): 2827-2846, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32049495

RESUMO

Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.


Assuntos
Carbono/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Nanopartículas/química , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , Desferroxamina/farmacologia , Hemina/antagonistas & inibidores , Hemina/farmacologia , Humanos , Ferro/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 8(1): 11920, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093732

RESUMO

In the long term, diabetes profoundly affects multiple organs, such as the kidney, heart, brain, liver, and eyes. The gradual loss of function in these vital organs contributes to mortality. Nonetheless, the effects of diabetes on the lung tissue are not well understood. Clinical and experimental data from our studies revealed that diabetes induces inflammatory and fibrotic changes in the lung. These changes were mediated by TGF-ß-activated epithelial-to-mesenchymal transition (EMT) signaling pathways. Our studies also found that glucose restriction promoted mesenchymal-to-epithelial transition (MET) and substantially reversed inflammatory and fibrotic changes, suggesting that diabetes-induced EMT was mediated in part by the effects of hyperglycemia. Additionally, the persistent exposure of diabetic cells to high glucose concentrations (25 mM) promoted the upregulation of caveolin-1, N-cadherin, SIRT3, SIRT7 and lactate levels, suggesting that long-term diabetes may promote cell proliferation. Taken together, our results demonstrate for the first time that diabetes induces fibrotic changes in the lung via TGF-ß1-activated EMT pathways and that elevated SMAD7 partially protects the lung during the initial stages of diabetes. These findings have implications for the management of patients with diabetes.


Assuntos
Diabetes Mellitus/genética , Fibrose Pulmonar/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética , Animais , Diabetes Mellitus/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fibrose Pulmonar/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA