Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Handb Exp Pharmacol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509238

RESUMO

Cannabis sativa is one of the oldest medicinal plants in human history. Even ancient physicians from hundreds of years ago used Cannabis sativa to treat several conditions like pain. In the modern era, the research community, including health-care providers, have witnessed wide-scale changes in cannabis policy, legislation, and marketing, with a parallel increase in patient interest. A simple search in PubMed using "cannabis and pain" as keywords provides more than 2,400 articles, about 80% of which were published in the last 8-10 years. Several advancements have been achieved in understanding the complex chemistry of cannabis along with its multiple pharmacological activities. Preclinical data have demonstrated evidence for the promising potential of cannabis for pain management, and the continuous rise in the prevalence of pain increases the urgency to translate this into clinical practice. Despite the large body of cannabis literature, researchers still need to find rigorous answers for the questions about the efficacy and safety of cannabis in treatment of certain disorders such as pain. In the current chapter, we seek to present a critical overview about the current knowledge on cannabis with special emphasis on pain-related disorders.

2.
Pharmacol Rev ; 73(4): 98-126, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663685

RESUMO

Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes ß-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes ß-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.


Assuntos
Canabinoides , Cannabis , Adulto , Analgésicos/farmacologia , Humanos , Qualidade de Vida , Terpenos/farmacologia
3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834455

RESUMO

Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-ß-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias da Mama , Dor do Câncer , Neuralgia , Humanos , Camundongos , Feminino , Animais , Oxaliplatina/efeitos adversos , Dor do Câncer/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/complicações , Neoplasias da Mama/tratamento farmacológico , Neoplasias Ósseas/complicações , Neoplasias Ósseas/tratamento farmacológico , Antineoplásicos/efeitos adversos
4.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203706

RESUMO

Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.


Assuntos
Antígenos CD , Caderinas , Células Endoteliais , Proteoma , Cálcio , Endocanabinoides/farmacologia , Cálcio da Dieta
5.
Am J Physiol Heart Circ Physiol ; 323(5): H845-H860, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149767

RESUMO

Cognitive decline is linked to decreased cerebral blood flow, particularly in women after menopause. Impaired cerebrovascular function precedes the onset of dementia, possibly because of reduced functional dilation in parenchymal arterioles. These vessels are bottlenecks of the cerebral microcirculation, and dysfunction can limit functional hyperemia in the brain. Large-conductance Ca2+-activated K+ channels (BKCa) are the final effectors of several pathways responsible for functional hyperemia, and their expression is modulated by estrogen. However, it remains unknown whether BKCa function is altered in cerebral parenchymal arterioles after menopause. Using a chemically induced model of menopause, the 4-vinylcyclohexene diepoxide (VCD) model, which depletes follicles while maintaining intact ovaries, we hypothesized that menopause would be associated with reduced functional vasodilatory responses in cerebral parenchymal arterioles of wild-type mice via reduced BKCa function. Using pressure myography of isolated parenchymal arterioles, we observed that menopause (Meno) induced a significant increase in spontaneous myogenic tone. Endothelial function, assessed as nitric oxide production and dilation after cholinergic stimulation or endothelium-dependent hyperpolarization pathways, was unaffected by Meno. BKCa function was significantly impaired in Meno compared with control, without changes in voltage-gated K+ channel activity. Cerebral functional hyperemia, measured by laser-speckle contrast imaging during whisker stimulation, was significantly blunted in Meno mice, without detectable changes in basal perfusion. However, behavioral testing identified no change in cognition. These findings suggest that menopause induces cerebral microvascular and neurovascular deficits.NEW & NOTEWORTHY Cerebral parenchymal arterioles from menopause mice showed increased myogenic tone. We identified an impairment in smooth muscle cell BKCa channel activity, without a reduction in endothelium-dependent dilation or nitric oxide production. Microvascular dysfunction was associated with a reduction in neurovascular responses after somatosensory stimulation. Despite the neurovascular impairment, cognitive abilities were maintained in menopausal mice.


Assuntos
Transtornos Cerebrovasculares , Hiperemia , Animais , Arteríolas/metabolismo , Colinérgicos/metabolismo , Estrogênios/metabolismo , Feminino , Menopausa , Camundongos , Óxido Nítrico/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(21): 10557-10562, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068460

RESUMO

Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial. We now provide evidence that sphingosine-1-phosphate (S1P) generated in the dorsal horn of the spinal cord in response to nerve injury drives neuropathic pain by selectively activating the S1P receptor subtype 1 (S1PR1) in astrocytes. Accordingly, genetic and pharmacological inhibition of S1PR1 with multiple antagonists in distinct chemical classes, but not agonists, attenuated and even reversed neuropathic pain in rodents of both sexes and in two models of traumatic nerve injury. These S1PR1 antagonists retained their ability to inhibit neuropathic pain during sustained drug administration, and their effects were independent of endogenous opioid circuits. Moreover, mice with astrocyte-specific knockout of S1pr1 did not develop neuropathic pain following nerve injury, thereby identifying astrocytes as the primary cellular substrate of S1PR1 activity. On a molecular level, the beneficial reductions in neuropathic pain resulting from S1PR1 inhibition were driven by interleukin 10 (IL-10), a potent neuroprotective and anti-inflammatory cytokine. Collectively, our results provide fundamental neurobiological insights that identify the cellular and molecular mechanisms engaged by the S1PR1 axis in neuropathic pain and establish S1PR1 as a target for therapeutic intervention with S1PR1 antagonists as a class of nonnarcotic analgesics.


Assuntos
Astrócitos/metabolismo , Neuralgia/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Sulfonas/uso terapêutico , Triazóis/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Interleucina-10/metabolismo , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Sulfonas/farmacologia , Triazóis/farmacologia
7.
Cephalalgia ; 41(3): 404-416, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131303

RESUMO

BACKGROUND: Despite increasing evidence differentiating episodic and chronic migraine, little work has determined how currently utilized animal models of migraine best represent each distinct disease state. AIM: In this review, we seek to characterize accepted preclinical models of migraine-like headache by their ability to recapitulate the clinical allodynic features of either episodic or chronic migraine. METHODS: From a search of the Pu bMed database for "animal models of migraine", "headache models" and "preclinical migraine", we identified approximately 80 recent (within the past 20 years) publications that utilized one of 10 different models for migraine research. Models reviewed fit into one of the following categories: Dural KCl application, direct electrical stimulation, nitroglycerin administration, inflammatory soup injection, CGRP injection, medication overuse, monogenic animals, post-traumatic headache, specific channel activation, and hormone manipulation. Recapitulation of clinical features including cephalic and extracephalic hypersensitivity were evaluated for each and compared. DISCUSSION: Episodic migraineurs comprise over half of the migraine population, yet the vast majority of current animal models of migraine appear to best represent chronic migraine states. While some of these models can be modified to reflect episodic migraine, there remains a need for non-invasive, validated models of episodic migraine to enhance the clinical translation of migraine research.


Assuntos
Transtornos de Enxaqueca , Animais , Modelos Animais de Doenças , Cefaleia , Hiperalgesia
8.
J Pharmacol Exp Ther ; 374(2): 331-341, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434943

RESUMO

Treating chronic pain by using opioids, such as morphine, is hampered by the development of opioid-induced hyperalgesia (OIH; increased pain sensitivity), antinociceptive tolerance, and withdrawal, which can contribute to dependence and abuse. In the central nervous system, the purine nucleoside adenosine has been implicated in beneficial and detrimental actions of morphine, but the extent of their interaction remains poorly understood. Here, we demonstrate that morphine-induced OIH and antinociceptive tolerance in rats is associated with a twofold increase in adenosine kinase (ADK) expression in the dorsal horn of the spinal cord. Blocking ADK activity in the spinal cord provided greater than 90% attenuation of OIH and antinociceptive tolerance through A3 adenosine receptor (A3AR) signaling. Supplementing adenosine signaling with selective A3AR agonists blocked OIH and antinociceptive tolerance in rodents of both sexes. Engagement of A3AR in the spinal cord with an ADK inhibitor or A3AR agonist was associated with reduced dorsal horn of the spinal cord expression of the NOD-like receptor pyrin domain-containing 3 (60%-75%), cleaved caspase 1 (40%-60%), interleukin (IL)-1ß (76%-80%), and tumor necrosis factor (50%-60%). In contrast, the neuroinhibitory and anti-inflammatory cytokine IL-10 increased twofold. In mice, A3AR agonists prevented the development of tolerance in a model of neuropathic pain and reduced naloxone-dependent withdrawal behaviors by greater than 50%. These findings suggest A3AR-dependent adenosine signaling is compromised during sustained morphine to allow the development of morphine-induced adverse effects. These findings raise the intriguing possibility that A3AR agonists may be useful adjunct to opioids to manage their unwanted effects. SIGNIFICANCE STATEMENT: The development of hyperalgesia and antinociceptive tolerance during prolonged opioid use are noteworthy opioid-induced adverse effects that reduce opioid efficacy for treating chronic pain and increase the risk of dependence and abuse. We report that in rodents, these adverse effects are due to reduced adenosine signaling at the A3AR, resulting in NOD-like receptor pyrin domain-containing 3-interleukin-1ß neuroinflammation in spinal cord. These effects are attenuated by A3AR agonists, suggesting that A3AR may be a target for therapeutic intervention with selective A3AR agonist as opioid adjuncts.


Assuntos
Analgésicos/efeitos adversos , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Morfina/efeitos adversos , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/etiologia , Adenosina/metabolismo , Animais , Feminino , Hiperalgesia/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/biossíntese , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
9.
J Pharmacol Exp Ther ; 369(1): 9-25, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709867

RESUMO

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.


Assuntos
Angiotensina I/química , Angiotensina I/farmacologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Demência Vascular/complicações , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Angiotensina I/farmacocinética , Angiotensina I/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Eletrocardiografia , Glicosilação , Meia-Vida , Insuficiência Cardíaca/complicações , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Proto-Oncogene Mas , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Memória Espacial/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
10.
Bioorg Med Chem Lett ; 26(1): 222-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26611918

RESUMO

N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (ß-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both µ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both µ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Analgésicos/síntese química , Analgésicos/farmacologia , Encefalinas/química , Encefalinas/farmacologia , Dor/tratamento farmacológico , Piperidinas/síntese química , Piperidinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Amidas/química , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/síntese química , Cobaias , Humanos , Íleo/efeitos dos fármacos , Ligantes , Camundongos , Estrutura Molecular , Piperidinas/química , Ratos , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 25(20): 4683-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323872

RESUMO

We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at µ and δ opioid receptors. They exhibit very good affinities at µ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at µ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (<15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.


Assuntos
Analgésicos/farmacologia , Desenho de Fármacos , Encefalinas/farmacologia , Contração Muscular/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/administração & dosagem , Encefalinas/química , Cobaias , Ligantes , Camundongos , Conformação Molecular , Medição da Dor/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 23(18): 6185-94, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26299827

RESUMO

A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on µ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the µ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the µ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the µ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity.


Assuntos
Amidas/química , Receptores Opioides/química , Amidas/síntese química , Amidas/farmacocinética , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Ligantes , Masculino , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacocinética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
13.
J Neurophysiol ; 111(11): 2222-31, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24598529

RESUMO

Trigeminal sensory afferent fibers terminating in nucleus caudalis (Vc) relay sensory information from craniofacial regions to the brain and are known to express transient receptor potential (TRP) ion channels. TRP channels are activated by H(+), thermal, and chemical stimuli. The present study investigated the relationships among the spontaneous release of glutamate, temperature, and TRPV1 localization at synapses in the Vc. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from Vc neurons (n = 151) in horizontal brain-stem slices obtained from Sprague-Dawley rats. Neurons had basal sEPSC rates that fell into two distinct frequency categories: High (≥10 Hz) or Low (<10 Hz) at 35°C. Of all recorded neurons, those with High basal release rates (67%) at near-physiological temperatures greatly reduced their sEPSC rate when cooled to 30°C without amplitude changes. Such responses persisted during blockade of action potentials indicating that the High rate of glutamate release arises from presynaptic thermal mechanisms. Neurons with Low basal frequencies (33%) showed minor thermal changes in sEPSC rate that were abolished after addition of TTX, suggesting these responses were indirect and required local circuits. Activation of TRPV1 with capsaicin (100 nM) increased miniature EPSC (mEPSC) frequency in 70% of neurons, but half of these neurons had Low basal mEPSC rates and no temperature sensitivity. Our evidence indicates that normal temperatures (35-37°C) drive spontaneous excitatory synaptic activity within superficial Vc by a mechanism independent of presynaptic action potentials. Thus thermally sensitive inputs on superficial Vc neurons may tonically activate these neurons without afferent stimulation.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Ácido Glutâmico/metabolismo , Células do Corno Posterior/fisiologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Núcleos do Trigêmeo/fisiologia , Animais , Ativação do Canal Iônico/fisiologia , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley
14.
J Neurophysiol ; 112(11): 2697-706, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25185814

RESUMO

The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 µM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents.


Assuntos
Nervos Cranianos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores , Lidocaína/análogos & derivados , Neurônios Aferentes/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Anestésicos Locais/farmacologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Nervos Cranianos/metabolismo , Nervos Cranianos/fisiologia , Lidocaína/farmacologia , Masculino , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
15.
Front Neurol ; 15: 1320791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352134

RESUMO

Primary headache disorders, such as migraine, account for a significant portion of disability rates worldwide, yet patients still struggle to receive the adequate medical and emotional support necessary to improve health outcomes. Insufficient pain management through either impractical pharmaceutical treatments or absent emotional support networks can worsen physical and mental health outcomes since comorbidities commonly associated with headache include hypertension, diabetes, depression, and anxiety. A lack of awareness on headache pathology and its observable severity can lead to pain-related prejudice that destroys beneficial aspects of patient self-advocacy and self-efficacy, thus potentially discouraging the use of healthcare services in favor of maladaptive coping skills. Acute treatments for primary headache disorders include non-steroidal anti-inflammatory drugs (i.e., aspirin, ibuprofen), triptans (i.e., sumatriptan), and opioids; however, continuous use of these pain-relieving agents can generate a secondary headache known as medication overuse headache (MOH). Recent work highlighting the overlap of morphological and functional brain changes in MOH and substance use disorder (SUD) suggests that insufficient pain management encourages analgesic misuse. The LGBTQ+ community-specifically transgender and gender non-conforming persons-struggles with high rates of mental illness and substance abuse. Since gender-affirming sex hormone therapy influences migraine progression, transgender and gender non-conforming (trans*) patients on hormone therapy have a higher risk for worsening migraine symptoms. However, trans* patients are less likely to have access to appropriate pain management techniques, thus preventing positive health outcomes for this vulnerable population.

16.
Bioorg Med Chem Lett ; 23(17): 4975-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23899615

RESUMO

The optimization and truncation of our lead peptide-derived ligand TY005 possessing eight amino-acid residues was performed. Among the synthesized derivatives, NP30 (Tyr(1)-DAla(2)-Gly(3)-Phe(4)-Gly(5)-Trp(6)-O-[3',5'-Bzl(CF3)2]) showed balanced and potent opioid agonist as well as substance P antagonist activities in isolated tissue-based assays, together with significant antinociceptive and antiallodynic activities in vivo.


Assuntos
Antagonistas dos Receptores de Neurocinina-1/química , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Humanos , Ligantes , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Receptores da Neurocinina-1/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
17.
Front Pain Res (Lausanne) ; 4: 1117842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795389

RESUMO

Migraine is a primary headache disorder recognized by the World Health Organization as one of the most poorly understood and debilitating neurological conditions impacting global disability. Chronic pain disorders are more frequently diagnosed among cisgender women than men, suggesting that female sex hormones could be responsible for mediating chronic pain, including migraine and/or that androgens can be protective. This review discusses the major gonadal hormones, estrogens, progesterone, and testosterone in the context of molecular mechanisms by which they play a role in migraine pathophysiology. In addition, the literature to date describing roles of minor sex hormones including prolactin, luteinizing hormone, follicular stimulating hormone, and gonadotropin releasing hormone in migraine are presented. Because transgender and gender non-conforming (trans*) individuals are an underserved patient population in which gender-affirming sex hormone replacement therapy (HRT) is often medically necessary to align biological sex with gender identity, results from cisgender patient populations are discussed in the context of these major and minor sex hormones on migraine incidence and management in trans* patients.

18.
Front Neurosci ; 17: 1126004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144090

RESUMO

Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.

19.
J Pain ; 24(3): 509-529, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283655

RESUMO

Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.


Assuntos
Analgésicos Opioides , Ibuprofeno , Humanos , Feminino , Masculino , Ratos , Animais , Analgésicos Opioides/farmacologia , Doenças Neuroinflamatórias , Morfina/farmacologia , Peptídeos Opioides , Anti-Inflamatórios , Dor Pós-Operatória
20.
Front Pain Res (Lausanne) ; 4: 1171188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287623

RESUMO

Introduction: The high prevalence and severe symptoms of migraines in humans emphasizes the need to identify underlying mechanisms that can be targeted for therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that reduced endocannabinoid tone may contribute to migraine development and other neuropathic pain conditions. While strategies that increase levels of the endocannabinoid n-arachidonoylethanolamide have been tested, few studies have investigated targeting the levels of the more abundant endocannabinoid, 2-arachidonoylgycerol, as an effective migraine intervention. Methods: Cortical spreading depression was induced in female Sprague Dawley rats via KCl (potassium chloride) administration, followed by measures of endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was then tested using reversal and prevention paradigms. Results: We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal grey associated with increased hydrolysis following headache induction. Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes, α/ß-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and prevented induced periorbital allodynia in a cannabinoid receptor-dependent manner. Discussion: Our study unravels a mechanistic link between 2-arachidonoylglycerol hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine. Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new therapeutic avenue for the treatment of headache.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA