RESUMO
BACKGROUND & AIMS: Hirschsprung disease, or congenital aganglionosis, is believed to be oligogenic-that is, caused by multiple genetic factors. We performed whole-genome sequence analyses of patients with Hirschsprung disease to identify genetic factors that contribute to disease development and analyzed the functional effects of these variants. METHODS: We performed whole-genome sequence analyses of 443 patients with short-segment disease, recruited from hospitals in China and Vietnam, and 493 ethnically matched individuals without Hirschsprung disease (controls). We performed genome-wide association analyses and gene-based rare-variant burden tests to identify rare and common disease-associated variants and study their interactions. We obtained induced pluripotent stem cell (iPSC) lines from 4 patients with Hirschsprung disease and 2 control individuals, and we used these to generate enteric neural crest cells for transcriptomic analyses. We assessed the neuronal lineage differentiation capability of iPSC-derived enteric neural crest cells using an in vitro differentiation assay. RESULTS: We identified 4 susceptibility loci, including 1 in the phospholipase D1 gene (PLD1) (P = 7.4 × 10-7). The patients had a significant excess of rare protein-altering variants in genes previously associated with Hirschsprung disease and in the ß-secretase 2 gene (BACE2) (P = 2.9 × 10-6). The epistatic effects of common and rare variants across these loci provided a sensitized background that increased risk for the disease. In studies of the iPSCs, we observed common and distinct pathways associated with variants in RET that affect risk. In functional assays, we found variants in BACE2 to protect enteric neurons from apoptosis. We propose that alterations in BACE1 signaling via amyloid ß precursor protein and BACE2 contribute to pathogenesis of Hirschsprung disease. CONCLUSIONS: In whole-genome sequence analyses of patients with Hirschsprung disease, we identified rare and common variants associated with disease risk. Using iPSC cells, we discovered some functional effects of these variants.
Assuntos
Sistema Nervoso Entérico/crescimento & desenvolvimento , Doença de Hirschsprung/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , China , Predisposição Genética para Doença , Variação Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Crista Neural/fisiologia , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/genética , Vietnã , Sequenciamento Completo do GenomaRESUMO
Common variants in RET and NRG1 have been associated with Hirschsprung disease (HSCR), a congenital disorder characterised by incomplete innervation of distal gut, in East Asian (EA) populations. However, the allelic effects so far identified do not fully explain its heritability, suggesting the presence of epistasis, where effect of one genetic variant differs depending on other (modifier) variants. Few instances of epistasis have been documented in complex diseases due to modelling complexity and data challenges. We proposed four epistasis models to comprehensively capture epistasis for HSCR between and within RET and NRG1 loci using whole genome sequencing (WGS) data in EA samples. 65 variants within the Topologically Associating Domain (TAD) of RET demonstrated significant epistasis with the lead enhancer variant (RET+3; rs2435357). These epistatic variants formed two linkage disequilibrium (LD) clusters represented by rs2506026 and rs2506028 that differed in minor allele frequency and the best-supported epistatic model. Intriguingly, rs2506028 is in high LD with one cis-regulatory variant (rs2506030) highlighted previously, suggesting that detected epistasis might be mediated through synergistic effects on transcription regulation of RET. Our findings demonstrated the advantages of WGS data for detecting epistasis, and support the presence of interactive effects of regulatory variants in RET for HSCR.