Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 246, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424314

RESUMO

Coral reefs, the largest bioconstruction on Earth, are formed by calcium carbonate skeletons of corals. Coral skeleton formation commonly referred to as calcification occurs in a specific compartment, the extracellular calcifying medium (ECM), located between the aboral ectoderm and the skeleton. Calcification models often assume a direct link between the surrounding seawater and the ECM. However, the ECM is separated from the seawater by several tissue layers and the cœlenteron, which contains the cœlenteric fluid found in both polyps and cœnosarc (tissue connecting the polyps). Symbiotic dinoflagellate-containing cells line the cœlenteron and their photosynthetic activity contributes to changes in the chemistry of the cœlenteric fluid, particularly with respect to pH. The aim of our study is to compare cœlenteron pH between the cœnosarc and polyps and to compare areas of high or low dinoflagellate density based on tissue coloration. To achieve this, we use liquid ion exchange (LIX) pH microsensors to profile pH in the cœlenteron of polyps and the cœnosarc in different regions of the coral colony in light and darkness. We interpret our results in terms of what light and dark exposure means for proton gradients between the ECM and the coelenteron, and how this could affect calcification.


Assuntos
Antozoários , Calcinose , Animais , Concentração de Íons de Hidrogênio , Carbonato de Cálcio , Recifes de Corais , Água do Mar
2.
Nat Commun ; 15(1): 1812, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418834

RESUMO

Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.


Assuntos
Antozoários , Nácar , Animais , Carbonato de Cálcio/química , Minerais/química , Cristalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA