Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Sci ; 113(3): 940-949, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34897916

RESUMO

The activation of RIG-I-like receptor (RLR) signaling in cancer cells is widely recognized as a critical cancer therapy method. The expected mechanism of RLR ligand-mediated cancer therapy involves the promotion of cancer cell death and strong induction of interferon (IFN)-ß that affects the tumor microenvironment. We have recently shown that activation of RLR signaling in triple-negative breast cancer cells (TNBC) attenuates transforming growth factor-ß (TGF-ß) signaling, which partly contributes to the promotion of cancer cell pyroptosis. However, the consequences of suppression of TGF-ß signaling by RLR ligands with respect to IFN-ß-mediated tumor suppression are not well characterized. This study showed that transfection of a typical RLR ligand polyI:C in cancer cells produces significant levels of IFN-ß, which inhibits the growth of the surrounding cancer cells. In addition, IFN-ß-induced cell cycle arrest in surrounding cancer cells was inhibited by the expression of constitutively active Smad3. Constitutively active Smad3 suppresses IFN-ß expression through the alleviation of IFN regulatory factor 3 binding to the canonical target genes, as suggested by ChIP sequencing analysis. Based on these findings, a new facet of the protumorigenic function of TGF-ß that suppresses IFN-ß expression is suggested when RLR-mediated cancer treatment is used in TNBC.


Assuntos
Interferon beta/metabolismo , Poli I-C/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/metabolismo , Poli I-C/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos
2.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746105

RESUMO

We developed a path-planning system for radiation source identification devices using 4π gamma imaging. The estimated source location and activity were calculated by an integrated simulation model by using 4π gamma images at multiple measurement positions. Using these calculated values, a prediction model to estimate the probability of identification at the next measurement position was created by via random forest analysis. The path-planning system based on the prediction model was verified by integrated simulation and experiment for a 137Cs point source. The results showed that 137Cs point sources were identified using the few measurement positions suggested by the path-planning system.


Assuntos
Diagnóstico por Imagem , Planejamento da Radioterapia Assistida por Computador , Radioisótopos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Cancer Sci ; 110(1): 209-220, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343527

RESUMO

Cyclin-dependent kinase (CDK) 4 and CDK6 inhibitors are effective therapeutic options for hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Although CDK4/6 inhibitors mainly target the cyclin D-CDK4/6-retinoblastoma tumor suppressor protein (RB) axis, little is known about the clinical impact of inhibiting phosphorylation of other CDK4/6 target proteins. Here, we focused on other CDK4/6 targets, SMAD proteins. We showed that a CDK4/6 inhibitor palbociclib and activin-SMAD2 signaling cooperatively inhibited cell cycle progression of a luminal-type breast cancer cell line T47D. Palbociclib enhanced SMAD2 binding to the genome by inhibiting CDK4/6-mediated linker phosphorylation of the SMAD2 protein. We also showed that cyclin G2 plays essential roles in SMAD2-dependent cytostatic response. Moreover, comparison of the SMAD2 ChIP-seq data of T47D cells with those of Hs578T (triple-negative breast cancer cells) indicated that palbociclib augmented different SMAD2-mediated functions based on cell type, and enhanced SMAD2 binding to the target regions on the genome without affecting its binding pattern. In summary, palbociclib enhances the cytostatic effects of the activin-SMAD2 signaling pathway, whereas it possibly strengthens the tumor-promoting aspect in aggressive breast cancer.


Assuntos
Ativinas/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/metabolismo , Proteína Smad2/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Citostáticos/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Smad2/genética
4.
Int Immunol ; 30(4): 141-154, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617862

RESUMO

Immunotherapies have led to the successful development of novel therapies for cancer. However, there is increasing concern regarding the adverse effects caused by non-tumor-specific immune responses. Here, we report an effective strategy to generate high-avidity tumor-antigen-specific CTLs, using Cas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) delivery. As a proof-of-principle demonstration, we selected the gp100 melanoma-associated tumor antigen, and cloned the gp100-specific high-avidity TCR from gp100-immunized mice. To enable rapid structural dissection of the TCR, we developed a 3D protein structure modeling system for the TCR/antigen-major histocompatibility complex (pMHC) interaction. Combining these technologies, we efficiently generated gp100-specific PD-1(-) CD8+ T cells, and demonstrated that the genetically engineered CD8+ T cells have high avidity against melanoma cells both in vitro and in vivo. Our methodology offers computational prediction of the TCR response, and enables efficient generation of tumor antigen-specific CD8+ T cells that can neutralize tumor-induced immune suppression leading to a potentially powerful cancer therapeutic.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/genética , Neoplasias/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/química , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Genes Reporter , Melanoma Experimental , Camundongos , Modelos Moleculares , Complexos Multiproteicos , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/imunologia , Antígeno gp100 de Melanoma/metabolismo
5.
Anal Chem ; 86(16): 8066-72, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25052688

RESUMO

Chemical oxygen demand (COD) was measured directly with a simple electrochemical method using a boron-doped diamond (BDD) electrode. By applying a highly positive potential (+2.5 V vs Ag/AgCl) to an aqueous electrolyte containing potassium hydrogen phthalate, glucose, and lactic acid or sodium dodecylbenzenesulfonate using a BDD electrode, an anodic current corresponding to the electrolytic decomposition of these organic compounds was observed. No such current was seen on glassy carbon or platinum electrodes due to a significant background current caused by the oxygen evolution reaction. The electric charge for the anodic current observed at the BDD electrode was found to be consistent with the theoretical charge required for the electrolytic decomposition of the organic compounds to CO2 and was used to calculate COD. This analysis was performed by a simple I-t measurement at constant potential using a BDD electrode, and no calibration was needed. This new simple indicator, "ECOD" (electrochemical oxygen demand), will be useful for continuous monitoring of industrial wastewater with low protein concentrations and on-site instant analysis of natural water with a BDD electrode-based portable ECOD meter.

6.
Mol Med ; 19: 183-94, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23821362

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory synovitis that leads to the destruction of bone and cartilage. The receptor for advanced glycation end products (RAGE) is a multiligand membrane-bound receptor for high-mobility group box-1 (HMGB1) associated with development of RA by inducing production of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1 and IL-6. We developed a bone-targeting therapeutic agent by tagging acidic oligopeptide to a nonmembrane-bound form of RAGE (endogenous secretory RAGE [esRAGE]) functioning as a decoy receptor. We assessed its tissue distribution and therapeutic effectiveness in a murine model of collagen-induced arthritis (CIA). Acidic oligopeptide-tagged esRAGE (D6-esRAGE) was localized to mineralized region in bone, resulting in the prolonged retention of more than 1 wk. Weekly administration of D6-esRAGE with a dose of 1 mg/kg to RA model mice significantly ameliorated inflammatory arthritis, synovial hyperplasia, cartilage destruction and bone destruction, while untagged esRAGE showed little effectiveness. Moreover, D6-esRAGE reduced plasma levels of proinflammatory cytokines including TNF-α, IL-1 and IL-6, while esRAGE reduced the levels of IL-1 and IL-6 to a lesser extent, suggesting that production of IL-1 and IL-6 reduced along the blockade of HMGB1 receptor downstream signals by D6-esRAGE could be attributed to remission of CIA. These findings indicate that D6-esRAGE enhances drug delivery to bone, leading to rescue of clinical and pathological lesions in murine CIA.


Assuntos
Artrite Experimental/tratamento farmacológico , Osso e Ossos/metabolismo , Sistemas de Liberação de Medicamentos , Oligopeptídeos/administração & dosagem , Receptores Imunológicos/administração & dosagem , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide , Ácido Aspártico/química , Linhagem Celular , Colágeno Tipo II/imunologia , Citocinas/sangue , Proteína HMGB1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Receptor para Produtos Finais de Glicação Avançada
7.
J Biochem ; 171(4): 399-410, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-34908107

RESUMO

Smad proteins transduce signals downstream of transforming growth factor-ß (TGF-ß) and are one of the factors that regulate the expression of genes related to diseases affecting the skin. In the present study, we identified MAB21L4, also known as male abnormal 21 like 4 or C2orf54, as the most up-regulated targets of TGF-ß and Smad3 in differentiated human progenitor epidermal keratinocytes using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq). We found that TGF-ß induced expression of the barrier protein involucrin (encoded by the IVL gene). Transcriptional activity of the IVL promoter induced by TGF-ß was inhibited by MAB21L4 siRNAs. Further analysis revealed that MAB21L4 siRNAs also down-regulated the expression of several target genes of TGF-ß. MAB21L4 protein was located mainly in the cytosol, where it was physically bound to Smad3 and a transcriptional corepressor c-Ski. siRNAs for MAB21L4 did not inhibit the binding of Smad3 to their target genomic regions but down-regulated the acetylation of histone H3 lys 27 (H3K27ac), an active histone mark, near the Smad3 binding regions. These findings suggest that TGF-ß-induced MAB21L4 up-regulates the gene expression induced by TGF-ß, possibly through the inhibition of c-Ski via physical interaction in the cytosol.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Queratinócitos/metabolismo , Masculino , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
8.
Mol Oncol ; 15(5): 1289-1307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33342034

RESUMO

Development of innovative therapeutic modalities would address an unmet clinical need in the treatment of triple negative breast cancer (TNBC). Activation of retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) such as melanoma differentiation-associated gene 5 (MDA5) and RIG-I in cancer cells is suggested to suppress tumor progression by inducing cell death. Transfection of polyI:C, a conventionally used synthetic double-stranded RNA (dsRNA) analogue that activates RLRs, has been evaluated in clinical trials. However, detailed mechanisms of tumor suppression by RLRs, especially interactions with other signaling pathways, remain elusive. Here, we showed that transfection of polyI:C suppressed transforming growth factor-ß (TGF-ß) signaling in a MDA5- and RIG-I-dependent manner. We found that suppression of TGF-ß signaling by polyI:C promoted cancer cell death, which was attenuated by forced expression of constitutively active Smad3. More detailed analysis suggested that cell death by polyI:C transfection exhibited characteristics of pyroptosis, which is distinct from apoptosis. Therapeutic efficacy of polyI:C transfection was also demonstrated using a mouse model. These results indicated that intratumor administration of polyI:C and related dsRNA analogues may be promising treatments for TNBC through inhibition of the anti-pyroptotic function of TGF-ß.


Assuntos
Piroptose , RNA de Cadeia Dupla/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Piroptose/efeitos dos fármacos , Piroptose/genética , RNA de Cadeia Dupla/síntese química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células THP-1 , Fator de Crescimento Transformador beta/fisiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 11(1): 2553, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510374

RESUMO

The sense of agency refers to the feeling of control over one's own actions, and through them, the external events. This study examined the effect of modified visual feedback on the sense of agency over one's body movements using virtual reality in healthy individuals whose motor control was disturbed. Participants moved a virtual object using their right hand to trace a trajectory (Experiment 1) or a leading target (Experiment 2). Their motor control was disturbed by a delay in visual feedback (Experiment 1) or a 1-kg weight attached to their wrist (Experiment 2). In the offset conditions, the virtual object was presented at the median point between the desired position and the participants' actual hand position. In both experiments, participants reported improved sense of agency in the offset condition compared to the aligned condition where the visual feedback reflected their actual body movements, despite their motion being less precise in the offset condition. The results show that sense of agency can be enhanced by modifying feedback to motor tasks according to the goal of the task, even when visual feedback is discrepant from the actual body movements. The present study sheds light on the possibility of artificially enhancing body agency to improve voluntary motor control.

10.
Nat Cell Biol ; 22(4): 465-475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203421

RESUMO

Advanced clear cell renal cell carcinoma (ccRCC) frequently causes systemic inflammation. Recent studies have shown that cancer cells reshape the immune landscape by secreting cytokines or chemokines. This phenotype, called cancer-cell-intrinsic inflammation, triggers a metastatic cascade. Here, we identified the functional role and regulatory mechanism of inflammation driven by advanced ccRCC cells. The inflammatory nature of advanced ccRCC was recapitulated in a preclinical model of ccRCC. Amplification of cancer-cell-intrinsic inflammation during ccRCC progression triggered neutrophil-dependent lung metastasis. Massive expression of inflammation-related genes was transcriptionally activated by epigenetic remodelling through mechanisms such as DNA demethylation and super-enhancer formation. A bromodomain and extra-terminal motif inhibitor synchronously suppressed C-X-C-type chemokines in ccRCC cells and decreased neutrophil-dependent lung metastasis. Overall, our findings provide insight into the nature of inflammatory ccRCC, which triggers metastatic cascades, and suggest a potential therapeutic strategy.


Assuntos
Carcinoma de Células Renais/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/secundário , Linhagem Celular Tumoral , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Inflamação , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Prognóstico , Análise de Sobrevida , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Oncol ; 14(2): 277-293, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782890

RESUMO

Thyroid transcription factor-1 (TTF-1, encoded by the NKX2-1 gene) is highly expressed in small-cell lung carcinoma (SCLC) and lung adenocarcinoma (LADC), but how its functional roles differ between SCLC and LADC remains to be elucidated. Here, we compared the genome-wide distributions of TTF-1 binding regions and the transcriptional programs regulated by TTF-1 between NCI-H209 (H209), a human SCLC cell line, and NCI-H441 (H441), a human LADC cell line, using chromatin immunoprecipitation-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq). TTF-1 binding regions in H209 and H441 cells differed by 75.0% and E-box motifs were highly enriched exclusively in the TTF-1 binding regions of H209 cells. Transcriptome profiling revealed that TTF-1 is involved in neuroendocrine differentiation in H209 cells. We report that TTF-1 and achaete-scute homolog 1 (ASCL1, also known as ASH1, an E-box binding basic helix-loop-helix transcription factor, and a lineage-survival oncogene of SCLC) are coexpressed and bound to adjacent sites on target genes expressed in SCLC, and cooperatively regulate transcription. Furthermore, TTF-1 regulated expression of the Bcl-2 gene family and showed antiapoptotic function in SCLC. Our findings suggest that TTF-1 promotes SCLC growth and contributes to neuroendocrine and antiapoptotic gene expression by partly coordinating with ASCL1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Fator Nuclear 1 de Tireoide/metabolismo , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Motivos de Nucleotídeos , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA-Seq , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/mortalidade , Análise Serial de Tecidos
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 118-121, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945858

RESUMO

Sense of agency refers to the feeling of controlling one's own body. Many patients surviving from a stroke lose the sense of agency over their body. This is due to impairments in both motor control and sensory brain functions. As a result of this lack in the sense of agency, stroke patients tend to lose the intention of moving the paralyzed limb, which results in further deterioration of brain functions and worsening muscles and joints. The present study proposes a motor rehabilitation system using virtual reality to improve the sense of agency during upper-limb movement which is required for various daily life activities such as eating meals and operating devices. Specifically, participants were instructed to move their hand to track a moving target ball in a virtual reality environment, while the position of their real hand was measured via a motion capture system. Participants were shown another ball presenting the position of their hand in virtual reality. We tested the proposed system with healthy participants, of which the motor control was disturbed by a 1-kg weight attached on the wrist. Participants reported their sense of agency after each trial. The results showed that the sense of agency was enhanced by the proposed intervention. Our results pointed out a potentially useful method to improve the sense of agency during body movements using modified visual feedback, which may contribute to the development of rehabilitation for stroke patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Realidade Virtual , Humanos , Movimento , Desempenho Psicomotor , Extremidade Superior
13.
IEEE Trans Neural Syst Rehabil Eng ; 27(10): 2118-2127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494552

RESUMO

Sit-to-stand (STS) motion is an important daily activity, and many post-stroke patients have difficulty performing STS motion. Previous studies found that there are four muscle synergies (synchronized muscle activations) in the STS motion of healthy adults. However, for post-stroke patients, it is unclear whether muscle synergies change and which features primarily reflect motor impairment. Here, we use a machine learning method to demonstrate that temporal features in two muscle synergies that contribute to hip rising and balance maintenance motion reflect the motor impairment of post-stroke patients. Analyzing the muscle synergies of age-matched healthy elderly people ( n = 12 ) and post-stroke patients ( n = 33 ), we found that the same four muscle synergies could account for the muscle activity of post-stroke patients. Also, we were able to distinguish post-stroke patients from healthy people on the basis of the temporal features of these muscle synergies. Furthermore, these temporal features were found to correlate with motor impairment of post-stroke patients. We conclude that post-stroke patients can still utilize the same number of muscle synergies as healthy people, but the temporal structure of muscle synergies changes as a result of motor impairment. This could lead to a new rehabilitation strategy for post-stroke patients that focuses on activation timing of muscle synergies.


Assuntos
Transtornos Motores/fisiopatologia , Músculo Esquelético/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Algoritmos , Eletromiografia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Transtornos Motores/etiologia , Equilíbrio Postural , Postura Sentada , Posição Ortostática , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos
14.
Clin Biomech (Bristol, Avon) ; 67: 61-69, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075736

RESUMO

BACKGROUND: Recovery of postural adjustment, especially when seated, is important for performing activities of daily living after stroke. However, conventional clinical measures provide little insight into a common strategy for dynamic sitting balance and gait. We aimed to evaluate functional re-organization of posture and ambulatory performance after stroke. METHODS: The subjects of the study included 5 healthy men and 21 post-stroke patients. The spatiotemporal modular organization of ground reaction forces during a balance task in which the leg on the non-affected side was lifted off the ground while seated was quantified by using complex principal component analysis. FINDINGS: A 3% decrease in the temporal strength of the primary module in post-stroke patients was an independent predictor of gait performance in the hospital setting with high sensitivity and specificity. Tuning of the temporal strength was accompanied by the recovery of sitting and ambulation. INTERPRETATION: Our findings suggest that evaluation of the modular characteristics of ground reaction forces during a sitting balance task allows us to predict recovery and functional adaptation through daily physical rehabilitation.


Assuntos
Marcha/fisiologia , Equilíbrio Postural/fisiologia , Postura Sentada , Acidente Vascular Cerebral/fisiopatologia , Atividades Cotidianas , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Reabilitação do Acidente Vascular Cerebral , Caminhada/fisiologia
15.
Biosci Biotechnol Biochem ; 72(4): 1087-94, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391442

RESUMO

The gene for the D-mandelate dehydrogenase (D-ManDH) of Enterococcus faecalis IAM10071 was isolated by means of an activity staining procedure and PCR and expressed in Escherichia coli cells. The recombinant enzyme exhibited high catalytic activity toward various 2-ketoacid substrates with bulky hydrophobic side chains, particularly C3-branched substrates such as benzoylformate and 2-ketoisovalerate, and strict coenzyme specificity for NADH and NAD(+). It showed marked sequence similarity with known NADP-dependent 2-ketopantoate reductases (KPR). These results indicate that together with KPR, D-ManDH constitutes a new family of D-2-hydroxyacid dehydrogenases that act on C3-branched 2-ketoacid substrates with various specificities for coenzymes and substrates.


Assuntos
Oxirredutases do Álcool/metabolismo , Enterococcus faecalis/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Coloração e Rotulagem
16.
Sci Rep ; 8(1): 11865, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089815

RESUMO

Humans are capable of associating actions with their respective consequences if there is reliable contingency between them. The present study examined the link between the reliability of action consequence and the readiness potential (RP), which is a negative potential observed from about 1-2 s prior to the onset of an action with electroencephalography. In a condition of constant outcome, the participants' voluntary action always triggered beep sounds; thus, they were able to perceive the contingency between their action and the sound. In contrast, in a condition of inconstant outcome, the participants' actions only triggered the sound in half the trials. We found that both the early and late RPs were larger in the condition of constant compared to the condition of inconstant outcome. Our results showed that the RPs preceding the voluntary action reflected the reliability of action consequence. In other words, the action-effect contingency enhanced neural activities prior to the action.


Assuntos
Variação Contingente Negativa/fisiologia , Movimento/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
17.
Front Neurosci ; 12: 1042, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697144

RESUMO

The sit-to-stand motion is a common movement in daily life and understanding the mechanism of the sit-to-stand motion is important. Our previous study shows that four muscle synergies can characterize the sit-to-stand motion, and they have specific roles, such as upper body flexion, rising from a chair, body extension, and posture stabilization. The time-varying weight of these synergies are changed to achieve adaptive movement. However, the relationship between sensory input and the activation of the muscle synergies is not completely understood. In this paper, we aim to clarify how vestibular and visual inputs affect the muscle synergy in sit-to-stand motion. To address this, we conducted experiments as follows. Muscle activity, body kinematics, and ground reaction force were measured for the sit-to-stand motion under three different conditions: control, visual-disturbance, and vestibular-disturbance conditions. Under the control condition, the participants stood without any intervention. Under the visual-disturbance condition, the participants wore convex lens glasses and performed the sit-to-stand motion in a dark room. Under the vestibular-disturbance condition, a caloric test was performed. Muscle synergies were calculated for these three conditions using non-negative matrix factorization. We examined whether the same four muscle synergies were employed under each condition, and the changes in the time-varying coefficients were determined. These experiments were conducted on seven healthy, young participants. It was found that four muscle synergies could explain the muscle activity in the sit-to-stand motion under the three conditions. However, there were significant differences in the time-varying weight coefficients. When the visual input was disturbed, a larger amplitude was found for the muscle synergy that activated mostly in the final posture stabilization phase of the sit-to-stand motion. Under vestibular-disturbance condition, a longer activation was observed for the synergies that extended the entire body and led to posture stabilization. The results implied that during human sit-to-stand motion, visual input has less contribution to alter or correct activation of muscle synergies until the last phase. On the other hand, duration of muscle synergies after the buttocks leave are prolonged in order to adapt to the unstable condition in which sense of verticality is decreased under vestibular-disturbance.

18.
Sci Transl Med ; 10(429)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467297

RESUMO

Radiation-induced intestinal fibrosis (RIF) is a serious complication after abdominal radiotherapy for pelvic tumor or peritoneal metastasis. Herein, we show that RIF is mediated by eosinophil interactions with α-smooth muscle actin-positive (α-SMA+) stromal cells. Abdominal irradiation caused RIF especially in the submucosa (SM) of the small intestine, which was associated with the excessive accumulation of eosinophils in both human and mouse. Eosinophil-deficient mice showed markedly ameliorated RIF, suggesting the importance of eosinophils. After abdominal irradiation, chronic crypt cell death caused elevation of extracellular adenosine triphosphate, which in turn activated expression of C-C motif chemokine 11 (CCL11) by pericryptal α-SMA+ cells in the SM to attract eosinophils in mice. Inhibition of C-C chemokine receptor 3 (CCR3) by genetic deficiency or neutralizing antibody (Ab) treatment suppressed eosinophil accumulation in the SM after irradiation in mice, suggesting a critical role of the CCL11/CCR3 axis in the eosinophil recruitment. Activated α-SMA+ cells also expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate eosinophils. Transforming growth factor-ß1 from GM-CSF-stimulated eosinophils promoted collagen expression by α-SMA+ cells. In translational studies, treatment with a newly developed interleukin-5 receptor α-targeting Ab, analogous to the human agent benralizumab, depleted intestinal eosinophils and suppressed RIF in mice. Collectively, we identified eosinophils as a crucial factor in the pathogenesis of RIF and showed potential therapeutic strategies for RIF by targeting eosinophils.


Assuntos
Eosinófilos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Intestino Delgado/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Lesões Experimentais por Radiação/prevenção & controle
19.
Cancer Res ; 77(15): 4026-4038, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28611046

RESUMO

Poor prognoses for colorectal cancer patients with metastatic lesions have driven demand for the development of novel targeted therapies. Here, we demonstrate that expression of bone morphogenetic protein 4 (BMP-4) is universally upregulated in human colorectal cancer cells and tissues, resulting in activated BMP signaling. Inhibition of endogenous BMP signaling by the BMP type I receptor inhibitor LDN-193189 elevated expression of the phosphatase DUSP5 in colorectal cancer cells, inducing apoptosis via dephosphorylation of Erk MAPK. Administering LDN-193189 to mice diminished tumor formation of colorectal cancer cells. Our findings suggest inhibition of autocrine BMP-4 as a candidate treatment strategy for colorectal cancer. Cancer Res; 77(15); 4026-38. ©2017 AACR.


Assuntos
Comunicação Autócrina/fisiologia , Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Colorretais/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pirazóis/farmacologia , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 7(1): 1166, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446749

RESUMO

Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-ß and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-ß and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-ß. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-ß, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-ß-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-ß-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.


Assuntos
Transformação Celular Neoplásica , Cromatina/metabolismo , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Glândulas Mamárias Animais/citologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA