Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30104344

RESUMO

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Locomoção , Óxido Nítrico/química , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Transgênicos
2.
PLoS One ; 19(7): e0307818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058662

RESUMO

INTRODUCTION: High grade astrocytic glioma (HGG) is a lethal solid malignancy with high recurrence rates and limited survival. While several cytotoxic agents have demonstrated efficacy against HGG, drug sensitivity testing platforms to aid in therapy selection are lacking. Patient-derived organoids (PDOs) have been shown to faithfully preserve the biological characteristics of several cancer types including HGG, and coupled with the experimental-analytical hybrid platform Quadratic Phenotypic Optimization Platform (QPOP) which evaluates therapeutic sensitivity at a patient-specific level, may aid as a tool for personalized medical decisions to improve treatment outcomes for HGG patients. METHODS: This is an interventional, non-randomized, open-label study, which aims to enroll 10 patients who will receive QPOP-guided chemotherapy at the time of first HGG recurrence following progression on standard first-line therapy. At the initial presentation of HGG, tumor will be harvested for primary PDO generation during the first biopsy/surgery. At the point of tumor recurrence, patients will be enrolled onto the main study to receive systemic therapy as second-line treatment. Subjects who undergo surgery at the time of recurrence will have a second harvest of tissue for PDO generation. Established PDOs will be subject to QPOP analyses to determine their therapeutic sensitivities to specific panels of drugs. A QPOP-guided treatment selection algorithm will then be used to select the most appropriate drug combination. The primary endpoint of the study is six-month progression-free survival. The secondary endpoints include twelve-month overall survival, RANO criteria and toxicities. In our radiological biomarker sub-study, we plan to evaluate novel radiopharmaceutical-based neuroimaging in determining blood-brain barrier permeability and to assess in vivo drug effects on tumor vasculature over time. TRIAL REGISTRATION: This trial was registered on 8th September 2022 with ClinicalTrials.gov Identifier: NCT05532397.


Assuntos
Neoplasias Encefálicas , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Astrocitoma/tratamento farmacológico , Astrocitoma/patologia , Astrocitoma/diagnóstico por imagem , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/diagnóstico por imagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gradação de Tumores
3.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744809

RESUMO

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Assuntos
Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metiltransferases , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-akt , Metilação de RNA , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Transdução de Sinais , Metilação de RNA/genética , Receptores Proteína Tirosina Quinases/metabolismo
4.
Hypertension ; 79(12): 2854-2866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36263779

RESUMO

BACKGROUND: L-type CaV1.2 calcium channel, the primary gateway for Ca2+ influx in smooth muscles, is widely regulated by multiple posttranslational modifications, such as protein kinase-mediated phosphorylation and nitric oxide-induced S-nitrosylation. However, the effect of S-nitrosylation on CaV1.2 channel function and its role in arterial contractility are not well understood. METHODS: Electrophysiological recordings, Ca2+ and confocal imaging, and biochemical assays were used to functionally characterize S-nitrosylated CaV1.2 channels in vitro, while pressure myography and tail-cuff blood pressure measurement were conducted to evaluate the physiological effects of CaV1.2 S-nitrosylation ex vivo and in vivo. RESULTS: S-nitrosylation significantly reduced the CaV1.2 current density by promoting lysosomal degradation that leads to decreased levels of total and surface CaV1.2 channel proteins in a CaVß-independent manner and reducing the open probability of CaV1.2 channel. Mechanistically, the Cys1180 and Cys1280 residues within CaV1.2 channel have been determined as the molecular targets for S-nitrosylation as substitution of either Cys1180 or Cys1280 for serine resulted in substantial reduction of S-nitrosylation levels. Of note, CaV1.2 S-nitrosylation levels were significantly reduced in arteries isolated from both spontaneously hypertensive rats and patients with pulmonary hypertension. Moreover, mouse resistance arteries incubated with S-nitrosocysteine displayed much lower contractility and spontaneously hypertensive rats injected with S-nitrosocysteine also showed significantly reduced blood pressure, suggesting that reduced S-nitrosylation contributes to the upregulation of CaV1.2 channel activity in hypertensive arteries. CONCLUSIONS: This study provides strong evidence that S-nitrosylation-mediated downregulation of CaV1.2 channels is via 2 distinctive mechanisms and the findings offer potential pathways for therapeutic inventions in hypertension.


Assuntos
Hipertensão , Vasoconstrição , Ratos , Camundongos , Animais , Ratos Endogâmicos SHR , Óxido Nítrico/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Cálcio Tipo L/metabolismo , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA