Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1272432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939336

RESUMO

Introduction: Field cancerization is suggested to arise from imbalanced differentiation in individual basal progenitor cells leading to clonal expansion of mutant cells that eventually replace the epithelium, although without evidence. Methods: We performed deep sequencing analyses to characterize the genomic and transcriptomic landscapes of field change in two patients with synchronous aerodigestive tract tumors. Results: Our data support the emergence of numerous genetic alterations in cancer-associated genes but refutes the hypothesis that founder mutation(s) underpin this phenomenon. Mutational signature analysis identified defective homologous recombination as a common underlying mutational process unique to synchronous tumors. Discussion: Our analyses suggest a common etiologic factor defined by mutational signatures and/or transcriptomic convergence, which could provide a therapeutic opportunity.

2.
Sci Rep ; 10(1): 682, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959771

RESUMO

Generation of large amounts of genomic data is now feasible and cost-effective with improvements in next generation sequencing (NGS) technology. Ribonucleic acid sequencing (RNA-Seq) is becoming the preferred method for comprehensively characterising global transcriptome activity. Unique to cytoreductive surgery (CRS), multiple spatially discrete tumour specimens could be systematically harvested for genomic analysis. To facilitate such downstream analyses, laser capture microdissection (LCM) could be utilized to obtain pure cell populations. The aim of this protocol study was to develop a methodology to obtain high-quality expression data from matched primary tumours and metastases by utilizing LCM to isolate pure cellular populations. We demonstrate an optimized LCM protocol which reproducibly delivered intact RNA used for RNA sequencing and quantitative polymerase chain reaction (qPCR). After pathologic annotation of normal epithelial, tumour and stromal components, LCM coupled with cDNA library generation provided for successful RNA sequencing. To illustrate our framework's potential to identify targets that would otherwise be missed with conventional bulk tumour sequencing, we performed qPCR and immunohistochemical technical validation to show that the genes identified were truly expressed only in certain sub-components. This study suggests that the combination of matched tissue specimens with tissue microdissection and NGS provides a viable platform to unmask hidden biomarkers and provides insight into tumour biology at a higher resolution.


Assuntos
Neoplasias Colorretais/cirurgia , Perfilação da Expressão Gênica/métodos , Tumor de Krukenberg/cirurgia , Microdissecção e Captura a Laser/métodos , Neoplasias Ovarianas/cirurgia , Neoplasias Colorretais/genética , Neoplasias Colorretais/secundário , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Tumor de Krukenberg/genética , Neoplasias Ovarianas/genética , Análise de Sequência de RNA , Manejo de Espécimes , Fluxo de Trabalho
3.
Oral Oncol ; 111: 105035, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091845

RESUMO

OBJECTIVES: We have previously identified and validated a panel of molecular prognostic markers (ATP13A3, SSR3, and ANO1) for Head and Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the consequence of ATP13A3 dysregulation on signaling pathways, to aid in formulating a therapeutic strategy targeting ATP13A3-overexpressing HNSCC. MATERIALS AND METHODS: Gene Set Enrichment Analysis (GSEA) was performed on HNSCC microarray expression data (Internal local dataset [n = 92], TCGA [n = 232], EMBL [n = 81]) to identify pathways associated with high expression of ATP13A3. Validation was performed using immunohistochemistry (IHC) on tissue microarrays (TMAs) of head and neck cancers (n = 333), staining for ATP13A3 and phosphorylated Aurora kinase A (phospho-T288). Short interfering RNA was used to knockdown ATP13A3 expression in patient derived HNSCC cell lines. Protein expression of ATP13A3 and Aurora kinase A was then assessed by immunoblotting. RESULTS: GSEA identified Aurora kinase pathway to be associated with high expression of ATP13A3 (p = 0.026). The Aurora kinase pathway was also associated with a trend towards poor prognosis and tumor aggressiveness (p = 0.086, 0.094, respectively). Furthermore, the immunohistochemical staining results revealed a significant association between Aurora kinase activity and high ATP13A3 expression (p < 0.001). Knockdown of ATP13A3 in human head and neck cell lines showed decrease in Aurora kinase A levels. CONCLUSION: Tumors with high ATP13A3 are associated with high Aurora kinase activity. This suggests a potential therapeutic role of Aurora kinase inhibitors in a subset of poor prognosis HNSCC patients with overexpression of ATP13A3.


Assuntos
Adenosina Trifosfatases/metabolismo , Aurora Quinase A/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Adenosina Trifosfatases/genética , Aurora Quinase A/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras/genética , Terapia de Alvo Molecular/métodos , Prognóstico , RNA Interferente Pequeno , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA