Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Opt Lett ; 49(6): 1429-1432, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489417

RESUMO

We compare the performance of three optical amplifiers in the E-band: a bismuth-doped fiber amplifier (BDFA), a distributed Raman amplifier, and a discrete Raman amplifier (RA). Data transmission performance of 30 GBaud DP-16-QAM and DP-64-QAM signals transmitted over 50 km of G.652.D fiber is compared in terms of achieved signal-to-noise (SNR). In this specific case of relatively short distance, single-span transmission, the BDFA outperforms the distributed and discrete Raman amplifiers due to the impact of fiber nonlinear penalties at high input signal powers.

2.
Opt Express ; 31(22): 35777-35785, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017742

RESUMO

We experimentally investigated and demonstrated an ultralow noise hybrid amplifier that combines second-order distributed Raman amplifier (DRA) and first-order lumped Raman amplifier (LRA) in a cascaded approach. This approach allows for the reutilization of pump light from the LRA as the seed light in the second-order DRA, and simultaneous full-band dispersion compensation is realized by using dispersion compensation fiber in the LRA. This approach also supports broadband gain flattening based on the separated DRA and LRA configuration. The transmission application of the proposed amplifier was investigated using a set of 10 external cavity lasers (ECLs) in the C-band and 8 ECLs in the L-band. Ranging from 1531.12 nm to 1595.49 nm across C + L band, the proposed hybrid amplifier gives a maximum on-off gain of 27.2 dB and an average gain of 23.4 dB, with an extremely low effective noise figure (NF) of lower than -2.9 dB. Intensity modulation direct detection (IMDD) signal transmission is carried out at two different data rates across these 18 wavelengths in the C + L band: (1) 56 Gbps/λ PAM-4 signal; (2) 112 Gbps/λ PAM-4 signal. The results show that the error free transmissions are demonstrated over 101.6 km EX2000 fiber using both signals with 7% HD-FEC and 20% SD-FEC, respectively.

3.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991614

RESUMO

An optimized design for a broadband Raman optical amplifier in standard single-mode fiber covering the C and L bands is presented, to be used in combination with wideband optical phase conjugation (OPC) nonlinearity compensation. The use of two Raman pumps and fiber Bragg grating reflectors at different wavelengths for the transmitted (C band) and conjugated (L band) WDM channels is proposed to extend bandwidth beyond the limits imposed by single-wavelength pumping, for a total 10 THz. Optimization of pump and reflector wavelength, as well as pump powers, allows us to achieve low asymmetry across the whole transmission band for optimal nonlinearity compensation. System performance is simulated to estimate OSNR, gain flatness and nonlinear Kerr distortion.

4.
Opt Express ; 30(7): 11345-11359, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473081

RESUMO

In the design of fiber links for both continental and transoceanic optical communication systems, the optimization of span length is of high importance from both performance and cost perspectives. In this work, the maximization of signal-to-noise ratio (SNR) is investigated by optimizing the span length in wideband (up to 4.5-THz) Nyquist-spaced optical fiber communication systems. A simple and accurate closed-form expression of the optimal span length is provided, and a quick estimation of SNR is also described for practically feasible and cost-effective span length values.

5.
Opt Express ; 30(24): 43053-43061, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523012

RESUMO

We evaluate the performance penalty due to discrete Raman amplifier (DRA) in a long haul WDM transmission system. The investigation was primarily performed to study the impact of the accumulated nonlinear noise due to fibre chromatic dispersion and nonlinear coefficient(γ). Nonlinear fibres such as inverse dispersion fibre (IDF), dispersion compensation fibre (DCF) and a development fibre known as the Corning Raman fibre (CRF) with the opposite sign of CD to the other two, were taken as the gain fibre in the DRA stage of the long-haul transmission setup. To study the performance penalty with these Raman gain fibres a 30 GBaud 120 Gb/s DP-QPSK channel @1550 nm was combined with 9 spectrally shaped 50 GHz amplified spontaneous emission (ASE) channels for transmission over a recirculation loop with a per loop length of 63 km single mode fibre (SMF). Our modelling and experimental results show that a fibre with positive dispersion >10ps/nm/km and a nonlinear coefficient of ∼ 4W-1km-1 is a good choice of gain fibre for DRA-assisted coherent transmission system.

6.
Opt Express ; 30(24): 43118-43126, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523017

RESUMO

We report for the first time an ultra-wideband coherent (UWB) WDM transmission over a 70 km standard single mode fibre (SSMF) solely using a multistage discrete Raman amplifier (DRA) over the E-, S-, C- and L-bands of the optical window. The amplifier is based on a split-combine approach of spectral bands enabling signal amplification from 1410-1605 nm over an optical bandwidth of 195 nm (25.8 THz). The proposed amplifier was characterized with 143 channelized amplified spontaneous emission (ASE) dummy channels in the S-, C- and L-bands and 4 laser sources in the E-band (1410-1605 nm). The amplification results show an average gain of 14 dB and a maximum noise figure (NF) of 7.5 dB over the entire bandwidth. Coherent transmission with the proposed amplifier was performed using a 30 Gbaud PM-16-QAM channel coupled with the ASE channels over a 70 km SMF. The ultra-wideband transmission using the tailored multistage DRA shows transmission bandwidth of 195 nm with a maximum Q2 penalty of ∼4 dB in E- and S-band, and ∼2 dB in C- and L-band.

7.
Opt Lett ; 47(24): 6472-6475, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538465

RESUMO

We experimentally compare the performance of two key ultra-wideband discrete Raman amplifier structures, a cascaded dual-stage structure and an in-parallel dual-band structure, in fully loaded S-C-L band coherent transmission systems over 70 km of single-mode fiber. Our results show that dual-band discrete Raman amplifier with minimized backreflections can effectively avoid unstable random distributed feedback lasing, reduce the noise figure, and therefore improve the transmission performance for signals at shorter wavelengths, versus the cascaded dual-stage structure. The average noise figure for S-band signals is 6.8 dB and 7.2 dB for the dual-band structure and cascaded dual-stage structure, respectively, while the average S-band Q2 factor is similarly improved by 0.6 dB. Moreover, the cascaded dual-stage discrete Raman amplifier requires guard bands around the 1485-nm and 1508-nm pumps as the signal and pump wavelengths overlap, which results in a bandwidth loss of ∼10 nm and reduces the potential net data throughput to 28.6 Tb/s for 30-GBaud DP-16QAM signals. However, the dual-band structure can utilize the bandwidth more effectively, which leads to a higher estimated net data throughput of 31.2 Tb/s.

8.
Opt Lett ; 47(19): 5152-5155, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181209

RESUMO

We report the transmission of five 30-GBaud dual polarization 16-QAM signals over 160 km of standard single-mode fiber in the E-band (1410-1460 nm). The transmission line consists of two 80-km spans and three independent bismuth-doped fiber amplifiers. The developed amplifiers feature a maximum gain of 27.3 dB, 33.8 dB, and 28.3 dB with a minimum noise figure of 4.8 dB, 4.7 dB, and 5.3 dB, respectively. The maximum signal Q2 factor penalty is 4.5 dB, and the overall performance of the system is above the pre-forward-error-correction (FEC) threshold for a 10-15 post-FEC bit error rate. To the best of our knowledge, this is the record experimentally demonstrated transmission length for a coherent detection signal in the E-band.

9.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080843

RESUMO

In this paper, we investigate various designs of distributed Raman amplifier (DRA) to extend amplification bandwidth in mid-link optical phase conjugation (OPC) systems and compare bands 191-197 THz and 192-198 THz giving a total bandwidth of 6 THz using a single wavelength pump. We demonstrate the use of highly reflective fiber Bragg grating (FBG) to minimize gain variation across a WDM grid by optimizing forward and backward pump powers as well as the wavelength of FBGs for original and conjugated channels. Finally, we also simulate OSNR and Kerr nonlinear reduction as a product of signals asymmetry and nonlinear phase shift (NPS) for all channels.

10.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161505

RESUMO

In this paper, we review different designs of distributed Raman amplifiers which have been proposed to minimize the signal power profile asymmetry in mid-link optical phase conjugation systems. We demonstrate how the symmetrical signal power profiles along the fiber can be achieved using various distributed Raman amplification techniques in the single-span and more realistic multi-span circumstances. In addition, we show the theoretically predicted results of the Kerr nonlinear product reduction with different Raman techniques in mid-link optical phase conjugator systems, and then in-line/long-haul transmission performance using numerical simulations.

11.
Opt Express ; 29(20): 32081-32088, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615286

RESUMO

Relative intensity noise (RIN) induced penalties were experimentally measured in distributed Raman amplifiers (DRAs) for G.654.E and G.652.D fibres with forward, backward and bidirectional pumping configurations. The measured signal RIN using the G.654.E fibre was ∼3.5 dB and ∼2 dB lower than the G.652.D fibre with forward (FW) pump configuration for PM-QPSK and PM-8QAM signals, with single span transmission showing a Q-factor improvement of ∼3 dB and ∼2.5 dB for G.654.E over G.652.D fibres. The performance penalty in a long haul coherent system was evaluated for 28 GBaud PM-QPSK signals using a recirculation loop for backward and bidirectional distributed Raman amplifiers. Our experimental results demonstrate an additional transmission distance of more than 1000 km for G.654.E over its counterpart G.652.D assuming a HD-FEC limit of 8.5 dB.

12.
Sensors (Basel) ; 21(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640840

RESUMO

We compared the transmission performances of 600 Gbit/s PM-64QAM WDM signals over 75.6 km of single-mode fibre (SMF) using EDFA, discrete Raman, hybrid Raman/EDFA, and first-order or second-order (dual-order) distributed Raman amplifiers. Our numerical simulations and experimental results showed that the simple first-order distributed Raman scheme with backward pumping delivered the best transmission performance among all the schemes, notably better than the expected second-order Raman scheme, which gave a flatter signal power variation along the fibre. Using the first-order backward Raman pumping scheme demonstrated a better balance between the ASE noise and fibre nonlinearity and gave an optimal transmission performance over a relatively short distance of 75 km SMF.

13.
Opt Express ; 26(6): 7091-7097, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609395

RESUMO

We present a broadband (>70nm), dual stage, discrete Raman amplifier designed with small and standard core fibres to maximize gain and minimize nonlinearity. The amplifier provides ~19.5dB net gain, 22.5dBm saturation output power and a noise figure of <7.2dB. 120Gb/s DP-QPSK transmission over 38x80km at a pre-FEC BER <3.8x10-3 is demonstrated.

14.
Opt Express ; 26(18): 23960-23968, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184890

RESUMO

We experimentally demonstrate nonlinear noise compensation in an optical phase conjugation assisted 1st order Raman amplified 30x30Gbaud DP-QPSK transmission system with a spectral efficiency of 3.6b/s/Hz. We show that by optimizing the link symmetry, even with only 1st order Raman amplification a single, mid-link, optical phase conjugation compensates for 90% of the signal-signal nonlinear interference resulting in a 2.3dB performance enhancement. We show that increasing the number of optical phase conjugations in the presence of 10% residual nonlinearity results in a reduction in the performance enhancement owing to an enhancement in the nonlinear noise generation efficiency of the system. We achieve a record 72% optical phase conjugation enabled reach enhancement of the 30x30Gbaud DP-QPSK signals.

15.
Opt Express ; 26(3): 3145-3160, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401846

RESUMO

In this work, we will derive, validate, and analyze the theoretical description of nonlinear Kerr effects resulting from various transmission systems that deploy single or multiple optical phase conjugators (OPCs). We will show that the nonlinear Kerr compensation can be achieved, with various efficiencies, in both lumped and distributed Raman transmission systems. The results show that first order distributed Raman systems are superior to the discretely amplified systems in terms of the nonlinear Kerr compensation efficiency that a mid-link OPC can achieve. Also, we will show that the multi-OPC approach will diminish the nonlinearity compensation efficiency in any system as it will act as periodic dispersion compensators.

16.
Opt Express ; 25(18): 21454-21459, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041442

RESUMO

We experimentally evaluate the influence of RIN transfer from pump to signal on the transmission performance of a 10 × 30 Gbaud DP-QPSK transmission system using a 2nd-order ultra-long Raman fiber laser amplifier, considering the effect of cavity front-end reflectivity and forward pump power ratio. The evolution of the Q-factors with distance up to maximum reach is monitored for a 10 × 30 Gbaud DP-QPSK transmission system with WDM channels between 1542.94 nm to 1550.12 nm. A maximum transmission distance of 6479 km is found for configurations with low forward pump powers corresponding to the optimal balance between RIN and ASE impairments.

17.
Opt Express ; 24(25): 29170-29175, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958578

RESUMO

Relative intensity noise transfer from the pump to the signal in 2nd-order ultra-long Raman laser amplifiers for telecommunications is characterized numerically and experimentally. Our results showcase the need for careful adjustment of the front FBG reflectivity and the relative contribution of forward pump power, and their impact on performance. Finally, our analysis is verified through a 10 × 30 GBaud DP-QPSK transmission experiment, showing a large Q factor penalty associated with the combination of high forward pumping and high reflectivities.

18.
Opt Express ; 23(22): 28634-9, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561132

RESUMO

We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.

19.
Opt Express ; 23(25): 31772-8, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26698969

RESUMO

We numerically optimise in-span signal power asymmetry in different advanced Raman amplification schemes, achieving a 3% asymmetry over 62 km SMF using random DFB Raman laser amplifier. We then evaluate the impact of such asymmetry on the performance of systems using mid-link OPC by simulating transmission of 7 × 15 Gbaud 16QAM Nyquist-spaced WDM-PDM signals.

20.
Opt Express ; 23(17): 22181-9, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368191

RESUMO

We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA