Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 21(5): 665-75, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21467267

RESUMO

Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA-PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers.


Assuntos
Pareamento de Bases/genética , Neoplasias da Mama/genética , Mapeamento Cromossômico/métodos , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Biologia Computacional , DNA/genética , Feminino , Rearranjo Gênico , Humanos , Análise de Sequência de DNA
2.
Stem Cells ; 27(1): 29-39, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18845764

RESUMO

Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs.


Assuntos
Criopreservação , Glioblastoma/patologia , Neurônios/patologia , Esferoides Celulares/patologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Agregação Celular , Diferenciação Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glicoproteínas/metabolismo , Humanos , Cariotipagem , Camundongos , Camundongos SCID , Células-Tronco Multipotentes/patologia , Células-Tronco Neoplásicas/patologia , Peptídeos/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS Negl Trop Dis ; 11(6): e0005628, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614360

RESUMO

The vast burden of cryptococcal meningitis occurs in immunosuppressed patients, driven by HIV, and is caused by Cryptococcus neoformans var. grubii. We previously reported cryptococcal meningitis in Vietnam arising atypically in HIV uninfected, apparently immunocompetent patients, caused by a single amplified fragment length polymorphism (AFLP) cluster of C. neoformans var. grubii (VNIγ). This variant was less common in HIV infected individuals; it remains unclear why this lineage is associated with apparently immunocompetent patients. To study this host tropism we aimed to further our understanding of clinical phenotype and genomic variation within Vietnamese C. neoformans var. grubii. After performing MLST on C. neoformans clinical isolates we identified 14 sequence types (STs); ST5 correlated with the VNIγ cluster. We next compared clinical phenotype by lineage and found HIV infected patients with cryptococcal meningitis caused by ST5 organisms were significantly more likely to have lymphadenopathy (11% vs. 4%, p = 0.05 Fisher's exact test) and higher blood lymphocyte count (median 0.76 versus 0.55 X109 cells/L, p = 0.001, Kruskal-Wallis test). Furthermore, survivors of ST5 infections had evidence of worse disability outcomes at 70 days (72.7% (40/55) in ST5 infections versus 57.1% (52/91) non-ST5 infections (OR 2.11, 95%CI 1.01 to 4.41), p = 0.046). To further investigate the relationship between strain and disease phenotype we performed genome sequencing on eight Vietnamese C. neoformans var. grubii. Eight genome assemblies exhibited >99% nucleotide sequence identity and we identified 165 kbp of lineage specific to Vietnamese isolates. ST5 genomes harbored several strain specific regions, incorporating 19 annotated coding sequences and eight hypothetical proteins. These regions included a phenolic acid decarboxylase, a DEAD-box ATP-dependent RNA helicase 26, oxoprolinases, a taurine catabolism dioxygenase, a zinc finger protein, membrane transport proteins and various drug transporters. Our work outlines the complexity of genomic pathogenicity in cryptococcal infections and identifies a number of gene candidates that may aid the disaggregation of the pathways associated with the pathogenesis of Cryptococcus neoformans var. grubii.


Assuntos
Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , Variação Genética , Genoma Fúngico , Infecções por HIV/complicações , Meningite Criptocócica/microbiologia , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/fisiologia , Genômica , Especificidade de Hospedeiro , Humanos , Meningite Criptocócica/patologia , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Vietnã
4.
mBio ; 5(1): e00926-13, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24520057

RESUMO

UNLABELLED: Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10(6) transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE: Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.


Assuntos
Burkholderia pseudomallei/genética , Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Mutagênese Insercional , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Análise de Sequência de DNA
5.
Genome Biol ; 13(12): R115, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23237666

RESUMO

BACKGROUND: Gastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability. RESULTS: Integrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer--against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer. CONCLUSIONS: These results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Gástricas/genética , Adenocarcinoma/genética , Instabilidade Cromossômica , Desaminação , Exoma , Genômica , Instabilidade de Microssatélites , Mutação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA