Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999159

RESUMO

Poly(p-phenylene ethynylene) (PPE) molecular wires are one-dimensional materials with distinctive properties and can be applied in electronic devices. Here, the approach called first-principles quantum transport is utilized to investigate the PPE molecular wire field-effect transistor (FET) efficiency limit through the geometry of the gate-all-around (GAA) instrument. It is observed that the n-type GAA PPE molecular wire FETs with a suitable gate length (Lg = 5 nm) and underlap (UL = 1, 2, 3 nm) can gratify the on-state current (Ion), power dissipation (PDP), and delay period (τ) concerning the conditions in 2028 to achieve the higher performance (HP) request of the International Roadmap for Device and Systems (IRDS, 2022 version). In contrast, the p-type GAA PPE molecular wire FETs with Lg = 5, 3 nm, and UL of 1, 2, 3 nm could gratify the Ion, PDP, and τ concerning the 2028 needs to achieve the HP request of the IRDS in 2022, while Lg = 5 and UL = 3 nm could meet the Ion and τ concerning the 2028 needs to achieve the LP request of the IRDS in 2022. More importantly, this is the first one-dimensional carbon-based ambipolar FET. Therefore, the GAA PPE molecular wire FETs could be a latent choice to downscale Moore's law to 3 nm.

2.
Phys Chem Chem Phys ; 25(3): 2056-2062, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546566

RESUMO

Low-dimensional materials have been proposed as alternatives to silicon-based field-effect transistor (FET) channel materials in order to overcome the scaling limitation. In the present research, gate-all-around (GAA) Sb2Se3 nanowire FETs were simulated using the ab initio quantum transport method. The gate-length (Lg, Lg = 5 nm) GAA Sb2Se3 FETs with an underlap (UL, UL = 2, 3 nm) could satisfy the on-state current (Ion) and delay time (τ) of the 2028 requirements for high performance (HP) applications of the International Technology Roadmap for Semiconductors (ITRS) 2013. It is interesting that the Lg = 3 nm GAA Sb2Se3 FETs with a UL = 3 nm can meet the Ion, power dissipation (PDP), and τ of the 2028 requirements of ITRS 2013 for HP applications. Therefore, GAA Sb2Se3 FETs can be a potential candidate scaling Moore's law downward to 3 nm.

3.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513262

RESUMO

Two-dimensional (2D) semiconductors are being considered as alternative channel materials as silicon-based field-effect transistors (FETs) have reached their scaling limits. Recently, air-stable 2D selenium nanosheet FETs with a gate length of 5 µm were experimentally produced. In this study, we used an ab initio quantum transport approach to simulate sub-5 nm gate-length double-gate monolayer (ML) selenene FETs. When considering negative-capacitance technology and underlap, we found that 3 nm gate-length p-type ML selenene FETs can meet the 2013 ITRS standards for high-performance applications along the armchair and zigzag directions in the 2028 horizon. Therefore, ML selenene has the potential to be a channel material that can scale Moore's law down to a gate length of 3 nm.

4.
Phys Chem Chem Phys ; 24(22): 13897-13904, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621115

RESUMO

Spin-gapless semiconductor (SGS) materials are regarded as the most promising candidates for ideal massless and dissipationless states towards low-power spintronic device applications. Here, we propose a spin-gapless semiconducting black arsenic-phosphorus (AsP) monolayer halogenated by chlorine (Cl) adatoms and reveal the perfect spin Seebeck effect induced by its SGS character to produce pure thermal spin-current using first-principles calculations. Our results show that Cl atoms prefer to adsorb P atoms rather than As atoms in the AsP monolayer, behaving as a ferromagnetic semiconductor. The As-adsorbed AsP monolayer as an ideal SGS material with parabolic-type energy dispersion can be utilized to realize symmetrical spin Seebeck current for perfect pure thermal spin-current even at an extremely low on-off temperature. Moreover, in-plane strain engineering can effectively manipulate the electronic structures of the P-absorbed AsP monolayer for perfect parabolic-type SGS similar to As-adsorbed AsP, and to obtain the relevant thermoelectric effect. These distinct features suggest the potential applications of the Cl-halogenated AsP monolayer with the SGS character in low-power spin-caloritronic devices.

5.
Phys Chem Chem Phys ; 22(34): 19100-19107, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32808610

RESUMO

By using nonequilibrium molecular dynamics, thermal transport through a series of parallel step-like graphene nanoribbon (GNR) junctions is investigated. The theoretical results show that the thermal current flows preferentially from wide GNRs to narrow ones, displaying a pronounced thermal rectification effect. Moreover, several step-like GNR-based devices are designed, and the thermally driven spin-dependent currents are calculated by using density functional theory combined with the nonequilibrium Green's function approach. We find that thermal spin-dependent currents with opposite flow directions are generated when a temperature gradient is applied along the GNRs, indicating the occurrence of a spin-dependent Seebeck effect (SDSE). More interestingly, a negative differential SDSE occurs in the thermal spin currents, and the odd and even law appears in the spin-dependent currents, thermopowers and thermoelectric conversion efficiencies. Our theoretical results indicate that the parallel step-like GNRs are potential candidates to design spin caloritronics devices hosting thermal rectification and multiple thermal-spin transport functionalities.

6.
Phys Chem Chem Phys ; 20(29): 19424-19429, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29992219

RESUMO

A hybrid structure of carbon nanotubes and graphene nanoribbons was predicted and synthesized (Y. Li et al., Nat. Nanotechnol., 2012, 7, 394-400; P. Lou, J. Phys. Chem. C, 2014, 118, 4475-4482). Herein, using the non-equilibrium Green's function (NEGF) combined with density functional theory (DFT), the thermal spin transport properties and the figure of merit (a material constant proportional to the efficiency of a thermoelectric couple made with the material) of a composite of single-walled carbon nanotubes and zigzag-edge graphene nanoribbons, labeled (6,6)SWCNT/n-ZGNR, are investigated for n = 1, 2, 3, and 8. The results manifest that spin-dependent currents with opposite flow directions were generated when a temperature gradient was applied between two electrodes, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). Remarkably, when n = 3, the charge current is equal to zero, meaning that a perfect SDSE is observed. Moreover, a pure spin-dependent Seebeck diode (SDSD) effect can be observed. Finally, we notice that the device presents an n-type characteristic when n = 1, while the device has a p-type feature when n = 2. In particular, the spin-up thermopower is equal to the spin-down thermopower when n = 3; as a consequence, the charge thermopower is equal to zero, further demonstrating that a perfect SDSE is generated. These discoveries indicate that the (6,6)SWCNT/n-ZGNR is a promising candidate for spin caloritronics devices.

7.
ACS Omega ; 9(8): 9331-9347, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434872

RESUMO

This study explored the potential to improve the storage quality and prolong the shelf life of truffles by storing them in a modified atmosphere fresh-keeping box with sealed gas components of Active Modified Atmosphere Packaging (AMAP, 40% O2 + 60% CO2) at 4 °C. During the storage period, a total of 63 volatile components in 10 categories were detected, with aldehydes being the most abundant and the relative content of ethers being the highest. The relative odor activity value and principal component analysis revealed that isovaleraldehyde, 1-octen-3-ol, 1-octen-3-one, and dimethyl sulfide were the characteristic flavor components of fresh truffles. However, 3-methylthiopropionaldehyde and (E, E)-2,4-nonadienal were the components that caused the deterioration of truffle flavor and could potentially serve as markers of truffle decay characteristics. 16S rDNA high-throughput sequencing showed that Leuconostoc and Lactococcus were dominant in the truffle samples stored for 14 days, but the abundance of putrefactive pathogenic bacteria showed an increasing trend in the truffle samples stored for 28 days. During the whole storage period, the common fungi detected in the different treatment groups were Candida and Aspergillus. The relative abundance of the former decreased, while the relative abundance of the latter decreased initially and then increased. The correlation between volatile components and the microbial flora was further analyzed, which indicated that Lactococcus and Lactobacillus had the same contributions to the same flavor, while Pseudomonas and Glutamicibacter had the opposite contributions to the same flavor. The results provide a reference for the storage and preservation of truffles.

8.
Int J Med Mushrooms ; 26(5): 59-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780423

RESUMO

To fully utilize Phellinus igniarius fermentation mycelia, the present study investigated the in vitro antioxidant and α-amylase inhibitory properties of four Ph. igniarius strains. Organic solvents were used to extract fatty acids, phenolics, and flavonoids from the selected mushrooms. The composition and bioactivity of the extracts were evaluated. The lipid yield obtained using petroleum ether (7.1%) was higher than that obtained using 1:1 n-hex-ane+methanol (5.5%) or 2:1 dichloromethane+methanol (3.3%). The composition and relative content of saturated and unsaturated fatty acids in the petroleum ether extract were higher than those in other solvent extracts. Furthermore, ethyl acetate extracts had higher flavonoid and phenolic content and better antioxidant activity than other extracts; however, the 70% ethanol extracts had the best α-amylase inhibitory activity. The supernatant from the ethanol precipitation of aqueous and 1% (NH4)2C2O4 extracts could also be biocompound sources. This comparative study is the first highlighting the in vitro antioxidant and α-amylase inhibitory properties of the four strains of Ph. igniarius extracts prepared using different organic solvents, which makes the investigated species and extracts promising for biological application.


Assuntos
Antioxidantes , Flavonoides , Micélio , Fenóis , alfa-Amilases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Amilases/antagonistas & inibidores , Micélio/química , Flavonoides/farmacologia , Flavonoides/análise , Flavonoides/química , Fenóis/farmacologia , Fenóis/química , Fenóis/análise , Ácidos Graxos/análise , Ácidos Graxos/química , Solventes/química , Basidiomycota/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Fermentação
9.
J Phys Condens Matter ; 36(32)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670080

RESUMO

Topological phases in kagome systems have garnered considerable interest since the introduction of the colloidal kagome lattice. Our study employs first-principle calculations and symmetry analysis to predict the existence of ideal type-I, III nodal rings (NRs), type-I, III quadratic nodal points (QNPs), and Dirac valley phonons (DVPs) in a collection of two-dimensional (2D) kagome lattices M2C3(M = As, Bi, Cd, Hg, P, Sb, Zn). Specifically, the Dirac valley points (DVPs) can be observed at two inequivalent valleys with Berry phases of +πand-π, connected by edge arcs along the zigzag and armchair directions. Additionally, the QNP is pinned at the Γ point, and two edge states emerge from its projections. Notably, these kagome lattices also exhibit ideal type-I and III nodal rings protected by time inversion and spatial inversion symmetries. Our work examines the various categories of nodal points and nodal ring phonons within the 2D kagome systems and presents a selection of ideal candidates for investigating topological phonons in bosonic systems.

10.
Nanoscale ; 15(48): 19726-19734, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047474

RESUMO

To overcome the scaling restriction on silicon-based field-effect transistors (FETs), two-dimensional (2D) transition metal dichalcogenides (TMDs) have been strongly proposed as alternative materials. To explore the device performance limit of TMD-based FETs, in this work, the ab initio quantum transport approach is utilized to study the transport properties of monolayer VTe2/WTe2 heterojunction-based FETs possessing double gates (DGs) with a 5 nm gate length (Lg). Our theoretical simulations demonstrate that the DG-cold-source VTe2/WTe2 FETs with a 5 nm Lg and 2 or 3 nm proper underlap (UL) meet the basic requirements of the on-state current (Ion), power dissipation (PDP), and delay time (τ) for the 2028 needs of the International Technology Roadmap for Semiconductor (ITRS) 2013, which ensures their high-performance and low-power-dissipation device applications. Moreover, the DG-cold-source VTe2/WTe2-based FETs with a 3 nm Lg and 2 or 3 nm UL meet the high-performance requirements of Ion, τ, and PDP for the 2028 needs of ITRS 2013. Additionally, by further considering the negative capacitance technology in devices, the parameters τ, Ion, and PDP of the VTe2/WTe2-based FETs with a 1 nm Lg and 3 nm UL meet well with the 2028 needs for ITRS 2013 towards high-performance device applications. Our theoretical results uncover that the 2D DG-cold-source VTe2/WTe2 FETs can be used as a new kind of promising material candidate to drive the scaling of Moore's law down to 1 nm.

11.
Nanoscale ; 12(16): 8942-8948, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32267253

RESUMO

One-dimensional (1D) materials with robust ferromagnetic ground states are difficult to achieve but provide a significant platform for potential spintronic device applications in future. Herein, a new family of 1D transition metal dihalide (TMCl2; where TM = Cu, Co, Cr) nanowires are proposed by using first-principles calculations. Their dynamic stability is ensured by Born-Oppenheimer molecular dynamics simulations. The electronic structures demonstrate that both CoCl2 and CuCl2 nanowires are promising bipolar magnetic semiconductors (BMSs) and can be converted into 1D half-metal materials by a small amount of carrier doping. The CrCl2 nanowire is an antiferromagnetic semiconductor (AFS). The formation of a BMS is attributed to the superexchange coupling between the Co/Cu atoms through the 3p orbitals in the Cl atoms. By using Monte Carlo simulations, we found that the CoCl2 nanowire has a Curie point of 6 K, while the CuCl2 nanowire has a corresponding Curie point of 14 K. Our results allow us to put forward a strategy to realize 1D BMSs and to design low-dimensional AF spintronic devices.

12.
Sci Rep ; 8(1): 927, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343845

RESUMO

Metal-free magnetism and spin caloritronics are at the forefront of condensed-matter physics. Here, the electronic structures and thermal spin-dependent transport properties of armchair graphene nanoribbons (N-AGNRs), where N is the ribbon width (N = 5-23), are systematically studied. The results show that the indirect band gaps exhibit not only oscillatory behavior but also periodic characteristics with E 3p > E3p+1 > E3p+2 (E 3p , E3p+1 and E3p+2 are the band gaps energy) for a certain integer p, with increasing AGNR width. The magnetic ground states are ferromagnetic (FM) with a Curie temperatures (T C ) above room temperature. Furthermore, the spin-up and spin-down currents with opposite directions, generated by a temperature gradient, are almost symmetrical, indicating the appearance of the perfect spin-dependent Seebeck effect (SDSE). Moreover, thermally driven spin currents through the nanodevices induced the spin-Seebeck diode (SSD) effect. Our calculation results indicated that AGNRs can be applied in thermal spin nanodevices.

13.
J Phys Condens Matter ; 30(35): 355303, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30027896

RESUMO

Finite-layer nanoribbon materials have long been considered as potential candidates for nanodevices with novel quantum effects. Here we constructed a series of ferromagnetic armchair silicene nanoribbons (ASiNRs) with sp 3 and sp 2-type alternating hybridizations, and found that the ASiNRs with different widths are localized in different spin-resolved electronic states. As the width parameter N is increased from 5 to 22, the ASiNR transits from indirect-gap half metallicity (HM), to indirect-gap spin semiconductor (SC), then to direct-gap SC and finally to direct-gap HM. When a temperature gradient is produced along the nanoribbons, the spin-dependent currents with the opposite flow directions are driven and a nearly perfect spin-dependent Seebeck effect (SDSE) occurs. Moreover, attributing to symmetrical spin-resolved transport channels, nearly pure thermal spin current without any accompanying charge current can be generated. In addition, for some ASiNRs with proper widths, both the thermal spin-up current and spin-down one are contributed by the electrons in energy valleys, resulting in a well-defined valley-dependent SDSE. These theoretical findings suggest that the ASiNRs with the sp 3 and sp 2-type alternating hybridizations can be outstanding candidates for future spin caloritronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA