Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Anal Bioanal Chem ; 415(19): 4661-4673, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256307

RESUMO

Itaconic acid (IA) and its derivatives produced by fungi have significant potential as industrial feedstocks. We recently developed a method for the detection of these compounds based on their terminal C-C double bonds. However, the presence of reducing agents, such as glucose and other fungal metabolites, leads to undesirable side reactions, and consequently, deteriorates the detection specificity. Therefore, we developed a fluorescence detection method for IA and its derivatives underpinned by a photoclick reaction. The photoclick reaction between conjugated IA and 5-(4-methoxyphenyl)-2-phenyl-2H-tetrazole under UV irradiation affords a fluorescent product. No fluorescence was detected when succinic acid was subjected to the reaction, indicating that a terminal C-C double bond is required to induce fluorescence. Optimal reaction conditions were determined to be a combination of 80% final dimethyl sulfoxide concentration, 30-s UV irradiation, and a pH of 2. Two weeks after the reaction at 4 °C, 89.0% of the initial intensity was retained, indicating that the reaction product was relatively stable. Glucose and kojic acid did not induce fluorescence after the reaction, indicating that these reducing agents did not affect fluorescence. IA was detected in a culture of Aspergillus terreus, and its quantification using the photoclick reaction was in agreement with the results obtained using high-performance liquid chromatography analysis. Interestingly, the IA derivative avenaciolide present in submillimolar quantities was also detectable in a culture of Aspergillus avenaceus using this method. The established method will enable the development of high-throughput screening methods to identify fungi that produce IA and its derivatives.


Assuntos
Substâncias Redutoras , Succinatos , Succinatos/metabolismo , Ácido Succínico , Glucose/metabolismo
2.
Biotechnol Lett ; 45(11-12): 1467-1476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787832

RESUMO

OBJECTIVES: A bipolar membrane microbial fuel cell (bMFC) is used to generate electricity using cellulose in phosphate buffer solution as fuel, and the mechanism of electricity generation is elucidated from five reference experiments. RESULTS: The bMFC was operated for 20 days using cellulose as fuel and Cellulomonas fimi. In the first reference experiment, no microorganism was used. In the second experiment, a cation-exchange membrane was used instead of a bipolar membrane. In the third experiment, the bipolar membrane was used in the opposite orientation as in the main experiment. In the fourth experiment, D2O was used instead of H2O in the cathode chamber. In the final experiment, the tris-maleate buffer was used instead of a phosphate buffer. Sufficient power generation did not occur in either reference experiment. CONCLUSIONS: The bMFC continuously generated electricity for 20 days, and elucidated H+ and OH- react in bipolar membrane, where the counter cation of dihydrogen phosphate served as the final electron acceptor.


Assuntos
Fontes de Energia Bioelétrica , Hidrogênio , Celulose/metabolismo , Fosfatos , Elétrons , Eletricidade , Eletrodos , Cátions
3.
Biosci Biotechnol Biochem ; 85(7): 1716-1719, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33877301

RESUMO

Chemo-enzymatic synthesis of lacto-N-biose I (LNB) catalyzed by ß-1,3-galactosidase from Bacillus circulans (BgaC) has been developed using 4,6-dimethoxy-1,3,5-triazin-2-yl ß-galactopyranoside (DMT-ß-Gal) and GlcNAc as the donor and acceptor substrates, respectively. BgaC transferred the Gal moiety to the acceptor, giving rise to LNB. The maximum yield of LNB was obtained at the acceptor : donor substrate ratio of 1:30.


Assuntos
Bacillus/enzimologia , beta-Galactosidase/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Catálise , Glicosilação , Cinética , Estereoisomerismo , Especificidade por Substrato
4.
Appl Microbiol Biotechnol ; 104(21): 9041-9051, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32945901

RESUMO

Itaconic acid possessing a vinylidene group, which is mainly produced by fungi, is used as a biobased platform chemical and shows distinctive bioactivities. On the other hand, some fungi and lichens produce itaconic acid derivatives possessing itaconic acid skeleton, and the number of the derivatives is currently more than seventy. Based on the molecular structures, they can be categorized into two groups, alkylitaconic acids and α-methylene-γ-butyrolactones. Interestingly, some itaconic acid derivatives show versatile functions such as antimicrobial, anti-inflammatory, antitumor, and plant growth-regulating activities. The vinylidene group of itaconic acid derivatives likely participates in these functions. It is suggested that α-methylene-γ-butyrolactones are biosynthesized from alkylitaconic acids which are first biosynthesized from acyl-CoA and oxaloacetic acid. Some modifying enzymes such as hydroxylase and dehydratase are likely involved in the further modification after biosynthesis of their precursors. This contributes to the diversity of itaconic acid derivatives. In this review, we summarize their structures, functions, and biosynthetic pathways together with a discussion of a strategy for the industrial use. KEY POINTS: • Itaconic acid derivatives can be categorized into alkylitaconic acids and α-methylene-γ-butyrolactones. • The vinylidene group of itaconic acid derivatives likely participates in their versatile function. • It is suggested that α-methylene-γ-butyrolactones are biosynthesized from alkylitaconic acids which are first synthesized from acyl-CoA and oxaloacetic acid.


Assuntos
Vias Biossintéticas , Succinatos , Estrutura Molecular
5.
Curr Microbiol ; 77(11): 3704-3710, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32909101

RESUMO

Diols are versatile chemicals used for multiple manufacturing products. In some previous studies, Escherichia coli has been engineered to produce 1,2-propanediol (1,2-PDO) and 1,3-propanediol (1,3-PDO) from glucose. However, there are no reports on the direct production of these diols from starch instead of glucose as a substrate. In this study, we directly produced 1,2-PDO and 1,3-PDO from starch using E. coli engineered for expressing a heterologous α-amylase, along with the expression of 1,2-PDO and 1,3-PDO synthetic genes. For this, the recombinant plasmids, pVUB3-SBA harboring amyA gene for α-amylase production, pSR5 harboring pct, pduP, and yahK genes for 1,2-PDO production, and pSR8 harboring gpd1-gpp2, dhaB123, gdrAB, and dhaT genes for 1,3-PDO production, were constructed. Subsequently, E. coli BW25113 (ΔpflA) and BW25113 strains were transformed with pVUB3-SBA, pSR5, and/or pSR8. Using these transformants, direct production of 1,2-PDO and 1,3-PDO from starch was demonstrated under microaerobic condition. As a result, the maximum production titers of 1,2-PDO and 1,3-PDO from 1% glucose as a sole carbon source were 13 mg/L and 150 mg/L, respectively. The maximum production titers from 1% starch were similar levels (30 mg/L 1,2-PDO and 120 mg/L 1,3-PDO). These data indicate that starch can be an alternative carbon source for the production of 1,2-PDO and 1,3-PDO in engineered E. coli. This technology could simplify the upstream process of diol bioproduction.


Assuntos
Escherichia coli , Propilenoglicol , Escherichia coli/genética , Glicerol , Engenharia Metabólica , Propilenoglicóis , Amido
6.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545756

RESUMO

Despite advances in bone regenerative medicine, the relationship between stress-induced premature senescence (SIPS) in cells and bone regeneration remains largely unknown. Herein, we demonstrated that the implantation of a lipopolysaccharide (LPS) sustained-release gelatin sponge (LS-G) increases the number of SIPS cells and that the elimination of these cells promotes bone formation in critical-sized bone defects in the rat calvaria. Histological (hematoxylin-eosin and SA-ß-gal) and immunohistological (p16 and p21 for analyzing cellular senescence and 4-HNE for oxidation) staining was used to identify SIPS cells and elucidate the underlying mechanism. Bone formation in defects were analyzed using microcomputed tomography, one and four weeks after surgery. Parallel to LS-G implantation, local epigallocatechin gallate (EGCG) administration, and systemic senolytic (dasatinib and quercetin: D+Q) administration were used to eliminate SIPS cells. After LS-G implantation, SA-ß-gal-, p16-, and p21-positive cells (SIPS cells) accumulated in the defects. However, treatment with LS-G+EGCG and LS-G+D+Q resulted in lower numbers of SIPS cells than that with LS-G in the defects, resulting in an augmentation of newly formed bone. We demonstrated that SIPS cells induced by sustained stimulation by LPS may play a deleterious role in bone formation. Controlling these cell numbers is a promising strategy to increase bone regeneration.


Assuntos
Substitutos Ósseos/administração & dosagem , Catequina/análogos & derivados , Catequina/administração & dosagem , Dasatinibe/administração & dosagem , Osteoblastos/citologia , Quercetina/administração & dosagem , Crânio/lesões , Aldeídos/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Catequina/química , Catequina/farmacologia , Linhagem Celular , Senescência Celular , Dasatinibe/farmacologia , Preparações de Ação Retardada , Lipopolissacarídeos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Quercetina/farmacologia , Ratos , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Microtomografia por Raio-X
7.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801223

RESUMO

Matrix metalloproteinase (MMP)-2 and MMP-9 are well-known gelatinases that disrupt the extracellular matrix, including gelatin. However, the advantages of modulating MMP expression in gelatin-based materials for applications in bone regenerative medicine have not been fully clarified. In this study, we examined the effects of epigallocatechin gallate (EGCG), a major polyphenol catechin isolated from green tea, on MMP expression in gelatin sponges and its association with bone formation. Four gelatin sponges with or without EGCG were prepared and implanted into bone defects for up to 4 weeks. Histological and immunohistological staining were performed. Micro-computed tomography was used to estimate the bone-forming capacity of each sponge. Our results showed that EGCG integration attenuated MMP-2 (70.6%) and -9 expression (69.1%) in the 1 week group, increased residual gelatin (118.7%), and augmented bone formation (101.8%) in the 4 weeks group in critical-sized bone defects of rat calvaria compared with vacuum-heated gelatin sponges without EGCG. Moreover, vacuum-heated gelatin sponges with EGCG showed superior bone formation compared with other sponges. The results indicated that integration of EGCG in gelatin-based materials modulated the production and activity of MMP-2 and -9 in vivo, thereby enhancing bone-forming capacity.


Assuntos
Materiais Biocompatíveis/síntese química , Regeneração Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Catequina/análogos & derivados , Gelatina/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Engenharia Tecidual/métodos , Implantes Absorvíveis , Aldeídos/antagonistas & inibidores , Aldeídos/metabolismo , Animais , Reabsorção Óssea/diagnóstico por imagem , Catequina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/fisiologia , Alicerces Teciduais , Microtomografia por Raio-X
8.
J Am Chem Soc ; 140(44): 14599-14603, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30371070

RESUMO

Olefin cross-metathesis (CM) is a viable reaction for the modification of alkene-containing proteins. Although allyl sulfide or selenide side-chain motifs in proteins can critically enhance the rate of CM reactions, no efficient method for their site-selective genetic incorporation into proteins has been reported to date. Here, through the systematic evaluation of olefin-bearing unnatural amino acids for their metabolic incorporation, we have discovered S-allylhomocysteine (Ahc) as a genetically encodable Met analogue that is not only processed by translational cellular machinery but also a privileged CM substrate residue in proteins. In this way, Ahc was used for efficient Met codon reassignment in a Met-auxotrophic strain of E. coli (B834 (DE3)) as well as metabolic labeling of protein in human cells and was reactive toward CM in several representative proteins. This expands the use of CM in the toolkit for "tag-and-modify" functionalization of proteins.


Assuntos
Alcenos/metabolismo , Proteínas/metabolismo , Alcenos/química , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/química , Proteínas/genética
9.
Int J Mol Sci ; 19(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501071

RESUMO

Cost-effective and functionalized scaffolds are in high demand for stem-cell-based regenerative medicine to treat refractory bone defects in craniofacial abnormalities and injuries. One potential strategy is to utilize pharmacological and cost-effective plant polyphenols and biocompatible proteins, such as gelatin. Nevertheless, the use of chemically modified proteins with plant polyphenols in this strategy has not been standardized. Here, we demonstrated that gelatin chemically modified with epigallocatechin gallate (EGCG), the major catechin isolated from green tea, can be a useful material to induce bone regeneration in a rat congenial cleft-jaw model in vivo when used with/without adipose-derived stem cells or dedifferentiated fat cells. Vacuum-heated gelatin sponges modified with EGCG (vhEGCG-GS) induced superior osteogenesis from these two cell types compared with vacuum-heated gelatin sponges (vhGS). The EGCG-modification converted the water wettability of vhGS to a hydrophilic property (contact angle: 110° to 3.8°) and the zeta potential to a negative surface charge; the modification enhanced the cell adhesion property and promoted calcium phosphate precipitation. These results suggest that the EGCG-modification with chemical synthesis can be a useful platform to modify the physicochemical property of gelatin. This alteration is likely to provide a preferable microenvironment for multipotent progenitor cells, inducing superior bone formation in vivo.


Assuntos
Catequina/análogos & derivados , Fissura Palatina/terapia , Gelatina/química , Gelatina/farmacologia , Tecido Adiposo/citologia , Animais , Catequina/química , Catequina/farmacologia , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Microscopia Eletrônica de Varredura , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos , Medicina Regenerativa/métodos
10.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347668

RESUMO

Bone quality is a significant indicator of the result of bone treatments. However, information regarding the quality of regenerated bones is limited. The study investigates the effect of different compositions of vacuum heated epigallocatechin gallate-modified gelatins sponge (vhEGCG-GS) on the quality of regenerated bones in critical size defects (9 mm) of rat calvariae. Five different compositions of vhEGCG-GSs containing the same amount of EGCG and different amounts of gelatin were tested. Following four weeks after implantation, the harvested regenerated bones were evaluated by using micro-computed tomography analysis, histological evaluation (hematoxylin-eosin and Villaneueva Goldner staining), picrosirius red-staining with polarized microscopic observation for collagen maturation, and Fourier transform infrared spectroscopy microscopy and imaging analysis for mineral-matrix ratio. The results indicated that increasing content of gelatin in the vhEGCG-GSs promoted bone and osteoid formation but yielded porous bones. Furthermore, tissue mineral density decreased and the maximum mineral-matrix ratio increased. In contrast, vhEGCG-GSs containing smaller amount of gelatin formed mature collagen matrix in the regenerated bones. These results suggest that the alteration of composition of vhEGCG-GSs affected the bone forming capability and quality of regenerated bone and provides valuable insight for the fabrication of new bone substitute materials.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Catequina/análogos & derivados , Gelatina/química , Animais , Densidade Óssea , Substitutos Ósseos/uso terapêutico , Catequina/química , Regeneração Tecidual Guiada/métodos , Masculino , Ratos , Ratos Sprague-Dawley
11.
Molecules ; 23(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641458

RESUMO

Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell-cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Catequina/análogos & derivados , Gelatina/farmacologia , Crânio/lesões , Alicerces Teciduais/química , Animais , Catequina/química , Linhagem Celular , Proliferação de Células , Gelatina/química , Calefação , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos , Medicina Regenerativa , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Engenharia Tecidual , Vácuo , Microtomografia por Raio-X
12.
Int J Mol Sci ; 16(6): 14143-57, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26110386

RESUMO

Catechins are extensively used in health care treatments. Nevertheless, there is scarce information about the feasibility of local administration with polyphenols for bone regeneration therapy, possibly due to lack of effective delivery systems. Here we demonstrated that the epigallocatechin-3-gallate-conjugated gelatin (EGCG/Gel) prepared by an aqueous chemical synthesis using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-morpholinium chloride (DMT-MM) gradually disintegrated with time and facilitated bone formation in a critical size defect of a mouse calvaria. Conjugation of EGCG with the Gel generated cross-linking between the two molecules, thereby leading to a retardation of the degradation of the EGCG/Gel and to a delayed release of EGCG. The prepared EGCG/Gels represented significant osteogenic capability compared with that of the uncross-linked Gel and the cross-linked Gel with uncombined-EGCG. In vitro experiments disclosed that the EGCG/Gel induced osteoblastogenesis of a mouse mesenchymal stem cell line (D1 cells) within 14 days. Using fluorescently-labeled EGCG/Gel, we found that the fraction of EGCG/Gel adsorbed onto the cell membrane of the D1 cells possibly via a Gel-cell interaction. The interaction might confer the long-term effects of EGCG on the cells, resulting in a potent osteogenic capability of the EGCG/Gel in vivo. These results should provide insight into local controlled release of polyphenols for bone therapy.


Assuntos
Catequina/análogos & derivados , Gelatina/química , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Polifenóis/farmacologia , Crânio/patologia , Animais , Catequina/química , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Osteogênese/efeitos dos fármacos , Crânio/efeitos dos fármacos
13.
Polymers (Basel) ; 16(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675019

RESUMO

Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.

14.
J Biol Chem ; 287(1): 693-700, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22090027

RESUMO

Bifidobacteria inhabit the lower intestine of mammals including humans where the mucin gel layer forms a space for commensal bacteria. We previously identified that infant-associated bifidobacteria possess an extracellular membrane-bound endo-α-N-acetylgalactosaminidase (EngBF) that may be involved in degradation and assimilation of mucin-type oligosaccharides. However, EngBF is highly specific for core-1-type O-glycan (Galß1-3GalNAcα1-Ser/Thr), also called T antigen, which is mainly attached onto gastroduodenal mucins. By contrast, core-3-type O-glycans (GlcNAcß1-3GalNAcα1-Ser/Thr) are predominantly found on the mucins in the intestines. Here, we identified a novel α-N-acetylgalactosaminidase (NagBb) from Bifidobacterium bifidum JCM 1254 that hydrolyzes the Tn antigen (GalNAcα1-Ser/Thr). Sialyl and galactosyl core-3 (Galß1-3/4GlcNAcß1-3(Neu5Acα2-6)GalNAcα1-Ser/Thr), a major tetrasaccharide structure on MUC2 mucin primarily secreted from goblet cells in human sigmoid colon, can be serially hydrolyzed into Tn antigen by previously identified bifidobacterial extracellular glycosidases such as α-sialidase (SiaBb2), lacto-N-biosidase (LnbB), ß-galactosidase (BbgIII), and ß-N-acetylhexosaminidases (BbhI and BbhII). Because NagBb is an intracellular enzyme without an N-terminal secretion signal sequence, it is likely involved in intracellular degradation and assimilation of Tn antigen-containing polypeptides, which might be incorporated through unknown transporters. Thus, bifidobacteria possess two distinct pathways for assimilation of O-glycans on gastroduodenal and intestinal mucins. NagBb homologs are conserved in infant-associated bifidobacteria, suggesting a significant role for their adaptation within the infant gut, and they were found to form a new glycoside hydrolase family 129.


Assuntos
Bifidobacterium/enzimologia , Mucinas/metabolismo , Proteólise , alfa-N-Acetilgalactosaminidase/metabolismo , Bifidobacterium/citologia , Bifidobacterium/genética , Biocatálise , Sequência de Carboidratos , Clonagem Molecular , Humanos , Lactente , Espaço Intracelular/enzimologia , Dados de Sequência Molecular , Filogenia , alfa-N-Acetilgalactosaminidase/genética
15.
J Biosci Bioeng ; 135(5): 375-381, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841726

RESUMO

In this study, glycerate was produced from glucose using engineered Escherichia coli BW25113. Plasmid pSR3 carrying gpd1 and gpp2 encoding two isoforms of glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae and plasmid pLB2 carrying aldO encoding alditol oxidase from Streptomyces violaceoruber were introduced into E. coli to enable the production of glycerate from glucose via glycerol. Disruptions of garK and glxK genes in the E. coli genome were performed to minimize the consumption of glycerate produced. As a result, E. coli carrying these plasmids could produce nearly three times higher concentration of glycerate (0.50 ± 0.01 g/L) from 10 g/L glucose compared to E. coli EG_2 (0.14 ± 0.02 g/L). In M9 medium, disruption of garK and glxK resulted in an impaired growth rate with low production of glycerate, while supplementation of 0.5 g/L casamino acids and 0.5 g/L manganese sulfate to the medium replenished the growth rate and elevated the glycerate titer. Further disruption of glpF, encoding a glycerol transporter, increased the glycerate production to 0.80 ± 0.00 g/L. MR2 medium improved the glycerate production titers and specific productivities of E. coli EG_4, EG_5, and EG_6. Upscale production of glycerate was carried out in a jar fermentor with MR2 medium using E. coli EG_6, resulting in an improvement in glycerate production up to 2.37 ± 0.46 g/L with specific productivity at 0.34 ± 0.11 g-glycerate/g-cells. These results indicate that E. coli is an appropriate host for glycerate production from glucose.


Assuntos
Aquaporinas , Proteínas de Escherichia coli , Escherichia coli/genética , Glicerol , Glucose , Saccharomyces cerevisiae/genética , Glicerolfosfato Desidrogenase/genética , Fermentação , Engenharia Metabólica/métodos , Aquaporinas/genética , Proteínas de Escherichia coli/genética
16.
Carbohydr Res ; 523: 108740, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36634517

RESUMO

O-Glycosylated N-acetyl-ß-d-glucosamine-selective N-acetyl-ß-d-glucosaminidase (O-GlcNAcase), belonging to glycoside hydrolase family 84 (GH84), is known as a retaining glycosidase with the possibility of enzymatic transglycosylation. However, no enzymatic transglycosylation catalyzed by GH84 O-GlcNAcase has been reported. Here, enzymatic transglycosylation catalyzed by GH84 O-GlcNAcase was first reported. The enzymatic transglycosylation catalyzed by the GH84 O-GlcNAcase from Bacteroides thetaiotaomicron (BtGH84 O-GlcNAcase) was attained using 1,2-oxazoline derivative of N-acetyl-d-glucosamine (GlcNAc oxazoline) as a glycosyl donor substrate. The ß-linked N-acetyl-d-glucosamine (GlcNAc) derivative was enzymatically synthesized using N-(2-hydroxyethyl)acrylamide as an acceptor substrate. Interestingly, the ß1,6-linked disaccharide derivative of GlcNAc was also obtained in the case of using the GlcNAc derivative with a triazole-linked acrylamide group as an acceptor substrate. Additionally, a one-pot chemo-enzymatic transglycosylation starting from unprotected GlcNAc through GlcNAc oxazoline successfully showed through the combination with the direct synthesis of GlcNAc oxazoline in water and the enzymatic transglycosylation.


Assuntos
Acetilglucosamina , Acetilglucosaminidase , Dissacarídeos , Catálise , Acrilamidas
17.
Biosci Biotechnol Biochem ; 76(2): 423-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22313787

RESUMO

α-L-Arabinofuranosidase from the hyperthermophilic bacterium Thermotoga maritima (Tm-AFase) is an extremely thermophilic enzyme belonging to glycoside hydrolase family 51. It can catalyze the transglycosylation of a novel glycosyl donor, 4,6-dimethoxy-1,3,5-triazin-2-yl (DMT)-ß-D-xylopyranoside. In this study we determined the crystal structures of Tm-AFase in substrate-free and complex forms with arabinose and xylose at 1.8-2.3 Å resolution to determine the architecture of the substrate binding pocket. Subsite -1 of Tm-AFase is similar to that of α-L-arabinofuranosidase from Geobacillus stearothermophilus, but the substrate binding pocket of Tm-AFase is narrower and more hydrophobic. Possible substrate binding modes were investigated by automated docking analysis.


Assuntos
Glicosídeo Hidrolases/química , Thermotoga maritima/enzimologia , Sítios de Ligação , Biocatálise , Cristalização , Cristalografia por Raios X , Ligação Proteica
18.
Biochim Biophys Acta ; 1800(11): 1203-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20647032

RESUMO

BACKGROUND: An efficient method for synthesizing homogenous glycoproteins is essential for elucidating the structural and functional roles of glycans of glycoproteins. We have focused on the transglycosylation activity of endo-ß-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) as a tool for glycoconjugate syntheses, since it can transfer en bloc the oligosaccharide of not only high-mannose type but also complex-type N-glycan onto various acceptors having an N-acetylglucosamine residue. However, there are two major bottlenecks for its practical application: the low yield of the transglycosylation product and the difficulty to obtain the activated sugar oxazoline substrate, especially the sialo-complex type one. METHODS: We carried out the transglycosylation using a glycosynthase-like N175Q mutant of Endo-M, which was found to possess enhanced transglycosylation activity with sugar oxazoline as a donor substrate, in combination with an easy preparation of the sialo-complex-type sugar oxazoline from natural sialoglycopeptide in egg yolk. RESULTS: Endo-M-N175Q showed efficient transglycosylation toward sialo-complex-type sugar oxazoline onto bioactive peptides and bovine ribonuclease B, and each sialylated compound was obtained in significantly high yield. CONCLUSIONS: Highly efficient and simple chemo-enzymatic syntheses of various sialylated compounds were enabled, by a combination of a simple synthesis of sialo-complex-type sugar oxazoline and the Endo-M-N175Q catalyzed transglycosylation. GENERAL SIGNIFICANCE: Our method would be very useful for a practical synthesis of biologically important glycopeptides and glycoproteins.


Assuntos
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Mucor/enzimologia , Mutação/genética , Oligossacarídeos/metabolismo , Oxazóis/metabolismo , Ácidos Siálicos/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Glicopeptídeos/metabolismo , Glicosilação , Dados de Sequência Molecular , Mucor/genética , Oxazóis/isolamento & purificação
19.
AMB Express ; 11(1): 117, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398341

RESUMO

1,2-propanediol (1,2-PDO) is a versatile chemical used in multiple manufacturing processes. To date, some engineered and non-engineered microbes, such as Escherichia coli, Lactobacillus buchneri, and Clostridium thermosaccharolyticum, have been used to produce 1,2-PDO. In this study, we demonstrated the production of R- and S-1,2-PDO using engineered Lactococcus lactis. The L- and D-lactic acid-producing L. lactis strains NZ9000 and AH1 were transformed with the plasmid pNZ8048-ppy harboring pct, pduP, and yahK genes for 1,2-PDO biosynthesis, resulting in L. lactis LL1 and LL2, respectively. These engineered L. lactis produced S- and R-1,2-PDO at concentrations of 0.69 and 0.50 g/L with 94.4 and 78.0% ee optical purities, respectively, from 1% glucose after 72 h of cultivation. Both 1% mannitol and 1% gluconate were added instead of glucose to the culture of L. lactis LL1 to supply NADH and NADPH to the 1,2-PDO production pathway, resulting in 75% enhancement of S-1,2-PDO production. Production of S-1,2-PDO from 5% mannitol and 5% gluconate was demonstrated using L. lactis LL1 with a pH-stat approach. This resulted in S-1,2-PDO production at a concentration of 1.88 g/L after 96 h of cultivation. To our knowledge, this is the first report on the production of R- and S-1,2-PDO using engineered lactic acid bacteria.

20.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012062

RESUMO

ß-tricalcium phosphate (ß-TCP) granules are commonly used materials in dentistry or orthopedic surgery. However, further improvements are required to raise the operability and bone-forming ability of ß-TCP granules in a clinical setting. Recently, we developed epigallocatechin gallate (EGCG)-modified gelatin sponges as a novel biomaterial for bone regeneration. However, there is no study on using the above material for preparing hydrogel incorporating ß-TCP granules. Here, we demonstrate that vacuum heating treatment induced thermal cross-linking in gelatin sponges modified with EGCG and incorporating ß-TCP granules (vhEc-GS-ß) so that the hydrogels prepared from vhEc-GS-ß showed high stability, ß-TCP granule retention, operability, and cytocompatibility. Additionally, microcomputed tomography morphometry revealed that the hydrogels from vhEc-GS-ß had significantly higher bone-forming ability than ß-TCP alone. Tartrate-resistant acid phosphatase staining demonstrated that the number of osteoclasts increased at three weeks in defects treated with the hydrogels from vhEc-GS-ß compared with that around ß-TCP alone. The overall results indicate that thermal cross-linking treatment for the preparation of sponges (precursor of hydrogels) can be a promising process to enhance the bone-forming ability. This insight should provide a basis for the development of novel materials with good operativity and bone-forming ability for bone regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA