Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Psychiatry Neurosci ; 49(1): E23-E34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302136

RESUMO

BACKGROUND: Depression is a prevalent nonmotor symptom in Parkinson disease and can greatly reduce the quality of life for patients; the dopamine receptors found in glutamatergic pyramidal cells in the medial prefrontal cortex (mPFC) play a role in regulating local field activity, which in turn affects behavioural and mood disorders. Given research showing that glial cell-derived neurotrophic factor (GDNF) may have an antidepressant effect, we sought to evaluate the impact of exogenous GDNF on depression-like behaviour in mouse models of Parkinson disease. METHODS: We used an established subacute model of Parkinson disease in mice involving intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), followed by brain stereotaxic injection of GDNF into the mPFC region. Subsequently, we assessed depression-like behaviour using the sucrose preference test, forced swimming test and tail suspension test, while also evaluating protein expression in the mPFC. RESULTS: We included 60 mice, divided into 3 groups, including a control group (saline injection), an MPTP plus saline injection group and an MPTP plus GDNF injection group. We found that exogenous GDNF injection into the mPFC led to an increase in dopamine receptor D1 (DRD1) protein levels. We also observed that activating the protein kinase A pathway through DRD1 produced a prolonged antidepressant response. Under GDNF stimulation, the expression of dopamine receptor D2 (DRD2) remained constant, suggesting that the DRD2 signal was ineffective in alleviating depression-like symptoms. Moreover, our investigation involved Golgi staining and Western blot techniques, which found enhanced synaptic plasticity, including increased dendritic branches, dendritic spines and retrograde protection after GDNF treatment in Parkinson disease models. LIMITATIONS: A subtle motor phenotype became evident only toward the conclusion of the behavioural testing period. The study exclusively involved male mice, and no separate control group receiving only GDNF treatment was included in the experimental design. CONCLUSION: Our findings support a positive effect of exogenous GDNF on synaptic plasticity, mediated by DRD1 signalling in the mPFC, which could facilitate depression remission in Parkinson disease.


Assuntos
Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , Doença de Parkinson/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Depressão/tratamento farmacológico , Qualidade de Vida , Córtex Pré-Frontal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175535

RESUMO

Parkinson's disease with cognitive impairment (PD-CI) results in several clinical outcomes for which specific treatment is lacking. Although the pathogenesis of PD-CI has not yet been fully elucidated, it is related to neuronal plasticity decline in the hippocampus region. The dopaminergic projections from the substantia nigra to the hippocampus are critical in regulating hippocampal plasticity. Recently, aerobic exercise has been recognized as an effective therapeutic strategy for enhancing plasticity through the secretion of various muscle factors. The exact role of FNDC5-an upregulated, newly identified myokine produced after exercise-in mediating hippocampal plasticity and regional dopaminergic projections in PD-CI remains unclear. In this study, the effect of treadmill exercise on hippocampal synaptic plasticity was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD models. The results showed that treadmill exercise substantially alleviated the motor dysfunction, cognition disorder, and dopaminergic neuron degeneration induced by MPTP. Here, we discovered that the quadriceps, serum, and brain FNDC5 levels were lower in PD mice and that intervention with treadmill exercise restored FNDC5 levels. Moreover, treadmill exercise enhanced the synaptic plasticity of hippocampal pyramidal neurons via increased dopamine levels and BDNF in the PD mice. The direct protective effect of FNDC5 is achieved by promoting the secretion of BDNF in the hippocampal neurons via binding the integrin αVß5 receptor, thereby improving synaptic plasticity. Regarding the indirect protection effect, FNDC5 promotes the dopaminergic connection from the substantia nigra to the hippocampus by mediating the interaction between the integrin αVß5 of the hippocampal neurons and the CD90 molecules on the membrane of dopaminergic terminals. Our findings demonstrated that treadmill exercise could effectively alleviate cognitive disorders via the activation of the FNDC5-BDNF pathway and enhance the dopaminergic synaptic connection from SNpc to the hippocampus in the MPTP-induced chronic PD model.


Assuntos
Transtornos Cognitivos , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Integrina alfaV/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Substância Negra/metabolismo , Transtornos Cognitivos/metabolismo , Dopamina/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fibronectinas/metabolismo
3.
Cell Mol Life Sci ; 79(1): 13, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964908

RESUMO

The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Apoptose , Humanos , Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Estresse Fisiológico
4.
J Cell Physiol ; 235(4): 3835-3848, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31603255

RESUMO

Glioblastoma multiforme (GBM) is a highly proliferative cancer with generally poor prognosis and accumulating evidence has highlighted the potential of long noncoding RNAs (lncRNAs) in the biological behaviors of glioma cells. This study focused on the identification of lncRNAs to identify targets for possible GBM prognosis. Microarray expression profiling found that 1,759 lncRNAs and 3,026 messenger RNAs (mRNAs) were upregulated, and 1932s lncRNA and 2,979 mRNAs were downregulated in GBM. Bioinformatics analysis and experimental verification identified TCONS_00020456 (TCON) for further analysis. In situ hybridization, along with immunohistochemical and receiver operating characteristic analysis determined TCON (truncation value = 3.5) as highly sensitive and specific in GBM. Grade IV patients with glioma life span with different lncRNA staining scores were analyzed. TCON staining scores below 3.5 indicated poor prognosis (life span ranging from 0.25 to 7 months), even if the glioma was surgically removed. TCON decreased significantly in GBM, and showed a coexpressional relationship with Smad2 and protein kinase C α (PKCα). Overexpression of TCON reduced the proliferation on one hand and migration, invasion on the other. TCON also inhibited epithelial-mesenchymal transformation and glioma progression in vivo, based on a nude mouse tumorigenicity assay. In addition, we predicted a potential binding site and intersection that microRNAs targeting Smad2, PKCα, and TCON through RACE pretest and bioinformatics analysis. Taken together, TCON, regarded as oncosuppressor, targeting the Smad2/PKCα axis plays a novel role in inhibiting the malignant progression of glioma. Moreover, it also demonstrates that the level of TCON can be used as a prognostic and diagnostic biomarker for GBM.


Assuntos
Glioblastoma/genética , Proteína Quinase C-alfa/genética , RNA Longo não Codificante/genética , Proteína Smad2/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Análise em Microsséries , RNA Longo não Codificante/isolamento & purificação , Transdução de Sinais/genética
5.
Neurochem Res ; 45(12): 2915-2925, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125618

RESUMO

Abnormally high expression of glial cell line-derived neurotrophic factor (GDNF) derived from glioma cells has essential impacts on gliomagenesis and development, but the molecular basis underlying increased GDNF expression in glioma cells remain unclear. This work aimed to study the molecular mechanisms that may explain the accumulation of GDNF in glioma. Firstly, we observed that cAMP response element-binding protein (CREB), known as an important transcription factor for binding of GDNF promoter region, was highly expressed with an apparent accumulation into the nucleus of glioma cells, which may contribute to the transcription of GDNF. Secondly, CUE domain-containing protein 2 (CUEDC2), a ubiquitin-regulated protein, could increase the amount of binding between the E3 ligase tripartite motif-containing 21 (TRIM21) and CREB and affect the CREB level. Like our previous study, it showed that there was a significantly down-regulation of CUEDC2 in glioma. Finally, our data suggest that GDNF expression is indirectly regulated by transcription factor ubiquitination. Indeed, down-regulation of CUEDC2, decreased the ubiquitination and degradation of CREB, which was associated to high levels of GDNF. Furthermore, abundant CREB involved in the binding to the GDNF promoter region contributes to GDNF high expression in glioma cells. Collectively, it was verified the GDNF expression was affected by CREB ubiquitination regulated by CUEDC2 level.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioma/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/genética , Humanos
6.
Dev Neurosci ; 40(2): 134-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29656289

RESUMO

BACKGROUND: Studies have shown that astrocytes play an important role in a variety of biological processes, so damage to astrocytes can cause a series of related diseases. Glial cell line-derived neurotrophic factor (GDNF) has always been considered a protective factor for dopamine neurons. However, it remains unclear whether GDNF has a protective effect on glial cells, especially astrocytes. In this study, we put forward the hypothesis that a high concentration of GDNF in the microenvironment of astrocytes exerts an inhibitory effect on the apoptosis of astrocytes by DNA-damaging reagents. METHODS: We isolated, purified, and identified primary astrocytes from neonate rats. Astrocytes were exposed to mitoxantrone (MTN, a DNA-damaging compound) for 24 h. The effects of MTN on astrocytes were tested by Hoechst 33342 staining, CCK-8 assay, and flow cytometry assay. One of the concentrations of MTN was applied to construct an apoptotic model of astrocytes. The astrocytes were then treated with GDNF together with a selected concentration of MTN for 24 h. The cell viability, cell nucleus morphology, and apoptosis ratio of the cells was assessed by Hoechst 33342 staining, CCK-8 assay, and flow cytometry assay, respectively. RNA sequencing (RNA-Seq), quantitative PCR analysis, and KEGG pathway mapping were performed to examine the genes involved in the procedure. Finally, Western blot analysis was applied to confirm the expression levels of the proteins of interest. RESULTS: Hoechst 33342 staining revealed a one-tenth change in the percentage of Hoechst-positive cells after the addition of 500 ng/mL GDNF combined with 1,000 nM MTN for 24 h. The viability of the cells treated the same as described above was 1.4-fold that of the control group. Flow cytometry assays indicated that the apoptotic rates were 17.67, 8.67, and 4.34% for 0, 200, and 500 ng/mL GDNF, respectively. Birc2, Birc3, and Gadd45b were linked to the antiapoptotic process induced by GDNF in astrocytes. Western blot analysis confirmed the elevated expression of Birc2 and Gadd45b. CONCLUSIONS: Our studies revealed that GDNF has a noticeable antiapoptotic effect on gene-injured astrocytes. This may provide critical clues for the treatment of a series of diseases in which damaged astrocytes are involved.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ratos , Ratos Sprague-Dawley
7.
Environ Sci Technol ; 50(5): 2692-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26849047

RESUMO

A variety of antibiotics have been found in aquatic environments, but antibiotics in drinking water and their contribution to antibiotic exposure in human are not well-explored. For this, representative drinking water samples and 530 urine samples from schoolchildren were selected in Shanghai, and 21 common antibiotics (five macrolides, two ß-lactams, three tetracyclines, four fluoquinolones, four sulfonamides, and three phenicols) were measured in water samples and urines by isotope dilution two-dimensional ultraperformance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Drinking water included 46 terminal tap water samples from different spots in the distribution system of the city, 45 bottled water samples from 14 common brands, and eight barreled water samples of different brands. Of 21 antibiotics, only florfenicol and thiamphenicol were found in tap water, with the median concentrations of 0.0089 ng/mL and 0.0064 ng/mL, respectively; only florfenicol was found in three bottled water samples from a same brand, with the concentrations ranging from 0.00060 to 0.0010 ng/mL; no antibiotics were found in barreled water. In contrast, besides florfenicol and thiamphenicol, an additional 17 antibiotics were detected in urine samples, and the total daily exposure doses and detection frequencies of florfenicol and thiamphenicol based on urine samples were significantly and substantially higher than their predicted daily exposure doses and detection frequencies from drinking water by Monte Carlo Simulation. These data indicated that drinking water was contaminated by some antibiotics in Shanghai, but played a limited role in antibiotic exposure of children.


Assuntos
Antibacterianos/análise , Água Potável/análise , Exposição Ambiental/análise , Poluentes Químicos da Água/análise , Adolescente , Antibacterianos/urina , Criança , China , Cidades , Feminino , Humanos , Macrolídeos/análise , Masculino , Espectrometria de Massas/métodos , Tetraciclinas/análise , Tianfenicol/análogos & derivados , Tianfenicol/análise , Poluentes Químicos da Água/urina
8.
Environ Sci Technol ; 49(8): 5070-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25830781

RESUMO

To explore the antibiotic body burden of Chinese school children, total urinary concentrations (free and conjugated) of 18 representative antibiotics (5 macrolides, 2 ß-lactams, 3 tetracyclines, 4 quinolones, and 4 sulfonamides) were measured by ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry among 1064 school students recruited from 3 economically and geographically distinct areas in east China in 2013. All 18 antibiotics were detected in urine samples with the detection frequencies ranging from 0.4 to 19.6%. The antibiotics were detected in 58.3% of urine samples overall, and this detection frequency reached at 74.4% in one study site. Of them, 47.8% of the urine samples had a sum of mass concentration of all antibiotics between 0.1 (minimum) and 20.0 ng/mL, and 8 antibiotics had their concentrations of above 1000 ng/mL in some urine samples. Three veterinary antibiotics, 4 human antibiotics, and 11 human/veterinary antibiotics were found overall in 6.3, 19.9, and 49.4% of urine samples, respectively. The detection frequencies and concentration levels of antibiotics in urine samples differed by study areas. Concerning mixed exposures, a total of 137 combinations of antibiotics and 20 combinations of antibiotic categories were found overall. Two or more antibiotics or categories were concurrently detected in more than 20% of urine samples. On the basis of a usage analysis, contaminated food or environment might be relevant exposure sources for tetracyclines, quinolones, and sulfonamides.


Assuntos
Antibacterianos/urina , Estudantes/estatística & dados numéricos , Carga Corporal (Radioterapia) , Criança , China/epidemiologia , Estudos Transversais , Monitoramento Ambiental , Feminino , Humanos , Masculino
9.
Eur J Pediatr ; 174(11): 1481-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25956275

RESUMO

UNLABELLED: In epidemiological studies, urinary biomonitoring is a valid approach to assess the association between environmental chemical exposure and children's health. Many clinical biomarkers (e.g., endogenous metabolites) are also based on analysis of urine. Considering the variability in urinary output, urinary concentrations of chemicals are commonly adjusted by creatinine and specific gravity (SG). However, there is a lack of systematic evaluation of their appropriateness for children. Furthermore, urinary SG and creatinine excretion could be influenced by body mass index (BMI), but the effect of BMI status on the two correction factors is unknown. We measured SG and creatinine concentrations of repeated first morning urine samples collected from 243 primary school children (8-11 years) over 5 consecutive weekdays. Urinary SG presented a higher temporal consistency compared with creatinine. Urinary SG was associated with sex (p < 0.001), whereas sex (p =0.034) and BMI (p = 00.008) were associated with urinary creatinine levels. Inter-day collection time was not associated with SG or creatinine after excluding the effect of Monday as a confounder. When stratified by BMI status, none of the factors were associated with creatinine among the overweight and obese children. CONCLUSION: Generally, SG is preferable for correcting the variability in urinary output for children although creatinine correction may also perform well in overweight and obese children. SG correction is recommended for epidemiological exposure analysis in children based on urinary levels of exogenous or endogenous metabolites.


Assuntos
Biomarcadores/urina , Índice de Massa Corporal , Creatinina/urina , Gravidade Específica , Urinálise/métodos , Criança , China , Exposição Ambiental , Estudos Epidemiológicos , Feminino , Humanos , Masculino , Instituições Acadêmicas
10.
Neural Regen Res ; 19(8): 1759-1767, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103242

RESUMO

Parkinson's disease can affect not only motor functions but also cognitive abilities, leading to cognitive impairment. One common issue in Parkinson's disease with cognitive dysfunction is the difficulty in executive functioning. Executive functions help us plan, organize, and control our actions based on our goals. The brain area responsible for executive functions is called the prefrontal cortex. It acts as the command center for the brain, especially when it comes to regulating executive functions. The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine. However, little is known about how dopamine affects the cognitive functions of patients with Parkinson's disease. In this article, the authors review the latest research on this topic. They start by looking at how the dopaminergic system, is altered in Parkinson's disease with executive dysfunction. Then, they explore how these changes in dopamine impact the synaptic structure, electrical activity, and connection components of the prefrontal cortex. The authors also summarize the relationship between Parkinson's disease and dopamine-related cognitive issues. This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson's disease.

11.
Environ Int ; 183: 108366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061247

RESUMO

BACKGROUND: Neonicotinoids are the most widely used insecticides. Laboratory studies have suggested that neonicotinoids are one potential obesogen, but relevant data are limited in human. OBJECTIVE: To examine the association between exposure to neonicotinoids and childhood obesity. METHODS: We investigated 442 children in Shanghai, East China and measured eight neonicotinoids (thiamethoxam, clothianidin, acetamiprid, imidacloprid, thiacloprid, nitenpyram, dinotefuran, and imidaclothiz) and four metabolites (N-desmethyl-thiamethoxam, N-desmethyl-clothianidin, N-desmethyl-acetamiprid, and 5-OH-imidacloprid) in urine. Body mass index (BMI) and waist circumference (WC) were used to identify general overweight/obesity and central obesity, respectively. Linear and logistic regression models based on generalized estimating equations were used to investigate the associations of urinary neonicotinoids and metabolites with BMI z-score, WC z-score, general overweight/obesity, and central obesity. RESULTS: Children with a positive detection of clothianidin and its metabolite had a marginally higher BMI z-score (regression coefficient (ß): 0.08, 95% confidence interval (95% CI): 0.01, 0.14) after adjusted for relevant covariates. After creatinine-adjusted concentration was trichotomized, compared to children with a negative detection, children in the high urinary concentration of acetamiprid and its metabolite had a low BMI z-score (ß: -0.19, 95%CI: -0.30, -0.08), children in the medium urinary concentration of neonicotinoids and metabolites other than thiamethoxam, clothianidin, acetamiprid, and their metabolites had a marginally higher BMI z-score (ß: 0.25, 95%CI: 0.03, 0.46), a higher WC z-score (ß: 0.24, 95%CI: 0.14, 0.33), and a higher odds of central obesity (odds ratio (OR): 2.16, 95% CI: 1.28, 3.63), and children in the medium urinary concentration of all neonicotinoids and metabolites had a higher odds of central obesity (OR: 1.55, 95%CI: 1.04, 2.33). Some associations showed sex- and age- related differences. CONCLUSION: Urinary neonicotinoids and metabolites were found to be differently associated with obesity-related indexes, which suggested that exposure to neonicotinoids might have a mixed effect on childhood obesity.


Assuntos
Guanidinas , Inseticidas , Obesidade Infantil , Tiazóis , Humanos , Criança , Tiametoxam , Obesidade Abdominal , Sobrepeso , China , Neonicotinoides/urina , Nitrocompostos , Inseticidas/urina
12.
CNS Neurosci Ther ; 30(3): e14461, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718594

RESUMO

AIM: Aberrations in brain connections are implicated in the pathogenesis of Parkinson's disease (PD). We previously demonstrated that Glial cell-derived neurotrophic factor (GDNF) reduction is associated with cognition decline. Nonetheless, it is elusive if the pattern of brain topological connectivity differed across PD with divergent serum GDNF levels, and the accompanying profile of cognitive deficits has yet to be determined. METHODS: We collected data on the participants' cognition, demographics, and serum GDNF levels. Participants underwent 3.0T magnetic resonance imaging, and we assessed the degree centrality, brain network topology, and cortical thickness of the healthy control (HC) (n = 25), PD-high-GDNF (n = 19), and PD-low-GDNF (n = 19) groups using graph-theoretic measures of resting-state functional MRI to reveal how much brain connectivity varies and its clinical correlates, as well as to determine factors predicting the cognitive status in PD. RESULTS: The results show different network properties between groups. Degree centrality abnormalities were found in the right inferior frontal gyrus and right parietal lobe postcentral gyrus, linked with cognition scores. The two aberrant clusters serve as a potentially powerful signal for determining whether a patient has PD and the patient's cognition level after integrating with GDNF, duration, and dopamine dosage. Moreover, we found a significant positive relationship between the thickness of the left caudal middle frontal lobe and a plethora of cognitive domains. Further discriminant analysis revealed that the cortical thickness of this region could distinguish PD patients from healthy controls. The mental state evaluation will also be more precise when paired with GDNF and duration. CONCLUSION: Our findings reveal that the topological features of brain networks and cortical thickness are altered in PD patients with cognitive deficits. The above change, accompanied by the serum GDNF, may have merit as a diagnosis marker for PD and, arguably, cognition status.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Encéfalo/patologia , Cognição , Disfunção Cognitiva/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia
13.
J Mol Neurosci ; 73(7-8): 529-538, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354355

RESUMO

Infiltration of CD4 + T cells was found in brain tissue samples from PD patients, suggesting their involvement in developing central nervous system (CNS) disease. The idea of the gut-brain axis further corroborates intestinal T cells' activation as the central immune response initiation. However, the specific factors and molecular pathways regulating intestinal T-cell activation are unclear. We used the GSE156287 and GSE145814 datasets from the GEO database to analyze and obtain the miRNAs, which are aberrantly expressed in intestinal CD4 + T cells in PD patients and predict their regulatory target mRNAs. Further, combined with the GSE174473 dataset of CD4 + T cells sequencing in PD patients, we finally clarified the aberrant genes expressed in CD4 + T cells from the intestine of PD patients and constructed a miRNA-mRNA regulatory network. The highlight of our findings showed pathways, networks, biological functions, and key molecules potentially involved in the miRNA-mediated functional effects in CD4 + T cell from the intestine of PD patients. The hsa-miR-3180-3p mediated CBX8, etc. were determined as most effective in enhancing T cell survival. PEG10, etc. regulated by hsa-miR-20a-3p targets were possibly involved in T cell differentiation. The JPT2 regulated by hsa-miR-1281 were involved in influencing T cell infiltration. The discovery of this interaction between miRNA and mRNA in CD4 + T cell has important implications for understanding the intestinal initial of PD pathological molecular and anti-inflammation of T cell activation.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Complexo Repressor Polycomb 1/genética
14.
J Neuropathol Exp Neurol ; 83(1): 20-29, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38102789

RESUMO

Neural plasticity occurs within the central and peripheral nervous systems after spinal cord injury (SCI). Although central alterations have extensively been studied, it is largely unknown whether afferent and efferent fibers in pelvic viscera undergo similar morphological changes. Using a rat spinal cord transection model, we conducted immunohistochemistry to investigate afferent and efferent innervations to the kidney, colon, and bladder. Approximately 3-4 weeks after injury, immunostaining demonstrated that tyrosine hydroxylase (TH)-labeled postganglionic sympathetic fibers and calcitonin gene-related peptide (CGRP)-immunoreactive sensory terminals sprout in the renal pelvis and colon. Morphologically, sprouted afferent or efferent projections showed a disorganized structure. In the bladder, however, denser CGRP-positive primary sensory fibers emerged in rats with SCI, whereas TH-positive sympathetic efferent fibers did not change. Numerous CGRP-positive afferents were observed in the muscle layer and the lamina propria of the bladder following SCI. TH-positive efferent inputs displayed hypertrophy with large diameters, but their innervation patterns were sustained. Collectively, afferent or efferent inputs sprout widely in the pelvic organs after SCI, which may be one of the morphological bases underlying functional adaptation or maladaptation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Traumatismos da Medula Espinal , Ratos , Animais , Vísceras , Traumatismos da Medula Espinal/complicações , Imuno-Histoquímica , Medula Espinal , Vias Aferentes
15.
CNS Neurosci Ther ; 29(10): 2925-2939, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37101388

RESUMO

BACKGROUND: Levodopa (L-DOPA) is considered the most reliable drug for treating Parkinson's disease (PD) clinical symptoms. Regrettably, long-term L-DOPA therapy results in the emergence of drug-induced abnormal involuntary movements (AIMs) in most PD patients. The mechanisms underlying motor fluctuations and dyskinesia induced by L-DOPA (LID) are still perplexing. METHODS: Here, we first performed the analysis on the microarray data set (GSE55096) from the gene expression omnibus (GEO) repository and identified the differentially expressed genes (DEGs) using linear models for microarray analysis (Limma) R packages from the Bioconductor project. 12 genes (Nr4a2, Areg, Tinf2, Ptgs2, Pdlim1, Tes, Irf6, Tgfb1, Serpinb2, Lipg, Creb3l1, Lypd1) were found to be upregulated. Six genes were validated on quantitative polymerase chain reaction and subsequently, Amphiregulin (Areg) was selected (based on log2 fold change) for further experiments to unravel its involvement in LID. Areg LV_shRNA was used to knock down Areg to explore its therapeutic role in the LID model. RESULTS: Western blotting and immunofluorescence results show that AREG is significantly expressed in the LID group relative to the control. Dyskinetic movements in LID mice were alleviated by Areg knockdown, and the protein expression of delta FOSB, the commonly attributable protein in LID, was decreased. Moreover, Areg knockdown reduced the protein expression of P-ERK. In order to ascertain whether the inhibition of the ERK pathway (a common pathway known to mediate levodopa-induced dyskinesia) could also impede Areg, the animals were injected with an ERK inhibitor (PD98059). Afterward, the AIMs, AREG, and ERK protein expression were measured relative to the control group. A group treated with ERK inhibitor had a significant decrease of AREG and phosphorylated ERK protein expression relative to the control group. CONCLUSION: Taken together, our results indicate unequivocal involvement of Areg in levodopa-induced dyskinesia, thus a target for therapy development.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Camundongos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Oxidopamina/toxicidade , Antiparkinsonianos/uso terapêutico , Anfirregulina/genética , Anfirregulina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/metabolismo , Modelos Animais de Doenças
16.
Neural Regen Res ; 18(5): 1107-1117, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36255000

RESUMO

Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease. We then established a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson's disease.

17.
Environ Health ; 11: 79, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23083070

RESUMO

BACKGROUND: There is increasing evidence suggesting that Bisphenol A (BPA), one of the highest volume chemicals produced worldwide, can interfere with the body's natural weight control mechanisms to promote obesity. However, epidemiological studies for this are limited, especially for children. METHODS: A cross-sectional study was conducted to investigate the association between BPA exposure and body mass index (BMI) in school children. Three primary and three middle schools were randomly selected from 26 primary and 30 middle candidate schools in Changning District of Shanghai City in China. According to the BMI-based criteria by age and sex for screening of overweight or obese children, we randomly chose 20 obese, 10 overweight, and 30 normal weight children aged 8-15 years of age from each selected school. First morning urine was collected and total urine BPA concentrations were determined by ultra-performance liquid chromatography tandem mass spectrometry. Multiple linear regression analysis was conducted to examine the association of urine BPA concentrations and daily intake estimates with BMI. RESULTS: BPA was detected in 84.9% of urine samples with a geometric mean of 0.45 ng/mL. The daily intake estimates ranged from 0.03 µg/day to 1.96 µg/day with a geometric mean of 0.37 µg/day. The average urine BPA concentrations and daily intake estimates were similar for boys and girls, but significantly higher in older children than younger ones, and showed an increasing trend with BMI. Multiple linear regression analyses showed that urine BPA concentrations were significantly associated with increasing BMI values in all subjects after adjustment for age and sex and the results were similar before and after corrected by urine specific gravity. When stratified by age or sex, the associations remained significant in females and in those 8-11 years of age before corrected by specific gravity. Similar results were shown for the association between BMI and daily intake estimates. CONCLUSIONS: There is a possibility that BPA exposure increases BMI in school children. Given the cross-sectional nature of this study, longitudinal studies are warranted to confirm BPA exposure as a contributor to increased BMI in children.


Assuntos
Compostos Benzidrílicos/urina , Índice de Massa Corporal , Poluentes Ambientais/urina , Fenóis/urina , Adolescente , Criança , China , Estudos Transversais , Monitoramento Ambiental , Feminino , Humanos , Masculino , Estudantes
18.
Brain Res Bull ; 174: 349-358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224819

RESUMO

Treadmill exercise has been recognized as an effectively therapeutic strategy for Parkinson's disease (PD). However, its exact molecular mechanism of promoting PD remain unclear. Recently, the NLRP3 inflammasome is considered to play a critical role in the pathogenesis of PD. In this study, we investigated whether NLRP3 inflammasome was involved in treadmill exercise-induced neuroprotection and anti-inflammation effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. 8-week-old male mice (C57BL/6 strain) were divided into four groups: Control, MPTP, MPTP + EX and EX. MPTP was intraperitoneally injected into mice to establish chronic PD model. The open-field test and pole test were used to assess motor function. The results showed that treadmill exercise significantly alleviated motor dysfunction and dopaminergic neuron degeneration induced by MPTP. In addition, we also found that treadmill exercise suppressed MPTP-triggered microglia activation and the co-localization of NLRP3+/Iba-1+ cells in the substantia nigra. These effects were associated with suppression NLRP3 inflammasome via down-regulation of TLR4/MyD88/NF-κB pathway. Overall, our study demonstrated that treadmill exercise could effectively alleviates neuronal damage via inhibition of NLRP3 inflammasome and microglial activation in MPTP-induced PD mouse model.


Assuntos
Inflamassomos/genética , Intoxicação por MPTP/patologia , Intoxicação por MPTP/terapia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neurônios/patologia , Doença de Parkinson Secundária/patologia , Doença de Parkinson Secundária/terapia , Condicionamento Físico Animal/fisiologia , Animais , Terapia por Exercício , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Substância Negra/patologia , Receptor 4 Toll-Like/efeitos dos fármacos
19.
Neurosci Lett ; 760: 136088, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34233203

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) played critical roles in the survival and repair of dopaminergic (DA) neurons. Transcription factor Six2 could repair injured DA cells by promoting the expression of GDNF, however, the underlying molecular mechanisms remain largely unknown. In this study, we screened forty-three proteins that interacted with Six2 in MES23.5 DA cells treated with 6-OHDA by liquid chromatography - electrospray - ionization tandem mass spectrometry (LC-ESI-ITMS/MS). Among these proteins, Smarcd1 is a member of SWI/SNF chromatin-remodeling complex family. Our results confirmed that Smarcd1 formed a transcription complex with Six2, and Smarcd1 mainly binded to the 2840 bp-2933 bp region of the GDNF promoter. Furthermore, knockdown of Smarcd1 inhibited the effect of Six2 on GDNF expression, and resulted in decreased cell viability and increased the apoptosis of injured DA neurons, and the result of overexpression of Smarcd1 is opposite to knockdown. Taken together, our results indicate that smarcd1 can be recruited to the promoter region of GDNF by transcription factor Six2 to promote the effect of Six2 on GDNF expression and protect injured MES23.5 DA cells, which could be useful in identifying potential drug targets for promoting endogenous GDNF expression.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem Celular , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Células Híbridas , Camundongos , Ratos
20.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34244339

RESUMO

Spinal neuronal mechanisms regulate recovered involuntary micturition after spinal cord injury (SCI). It was recently discovered that dopamine (DA) is synthesized in the rat injured spinal cord and is involved in lower urinary tract (LUT) activity. To fully understand the role of spinal DAergic machinery in micturition, we examined urodynamic responses in female rats during pharmacological modulation of the DA pathway. Three to four weeks after complete thoracic SCI, the DA precursor L-DOPA administered intravenously during bladder cystometrogram (CMG) and external urethral sphincter (EUS) electromyography (EMG) reduced bladder overactivity and increased the duration of EUS bursting, leading to remarkably improved voiding efficiency. Apomorphine (APO), a non-selective DA receptor (DR) agonist, or quinpirole, a selective DR2 agonist, induced similar responses, whereas a specific DR2 antagonist remoxipride alone had only minimal effects. Meanwhile, administration of SCH 23390, a DR1 antagonist, reduced voiding efficiency by increasing tonic EUS activity and shortening the EUS bursting period. Unexpectedly, SKF 38393, a selective DR1 agonist, increased EUS tonic activity, implying a complicated role of DR1 in LUT function. In metabolic cage assays, subcutaneous administration of quinpirole decreased spontaneous voiding frequency and increased voiding volume; L-DOPA and APO were inactive possibly because of slow entry into the CNS. Collectively, tonically active DR1 in SCI rats inhibit urine storage and enhance voiding by differentially modulating EUS tonic and bursting patterns, respectively, while pharmacologic activation of DR2, which are normally silent, improves voiding by enhancing EUS bursting. Thus, enhancing DA signaling achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats.


Assuntos
Traumatismos da Medula Espinal , Micção , Animais , Eletromiografia , Feminino , Ratos , Ratos Sprague-Dawley , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Bexiga Urinária , Urodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA