Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
BMC Neurosci ; 22(1): 28, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882822

RESUMO

BACKGROUND: Brain radiation exposure, in particular, radiotherapy, can induce cognitive impairment in patients, with significant effects persisting for the rest of their life. However, the main mechanisms leading to this adverse event remain largely unknown. A study of radiation-induced injury to multiple brain regions, focused on the hippocampus, may shed light on neuroanatomic bases of neurocognitive impairments in patients. Hence, we irradiated BALB/c mice (male and female) at postnatal day 3 (P3), day 10 (P10), and day 21 (P21) and investigated the long-term radiation effect on brain MRI changes and hippocampal neurogenesis. RESULTS: We found characteristic brain volume reductions in the hippocampus, olfactory bulbs, the cerebellar hemisphere, cerebellar white matter (WM) and cerebellar vermis WM, cingulate, occipital and frontal cortices, cerebellar flocculonodular WM, parietal region, endopiriform claustrum, and entorhinal cortex after irradiation with 5 Gy at P3. Irradiation at P10 induced significant volume reduction in the cerebellum, parietal region, cingulate region, and olfactory bulbs, whereas the reduction of the volume in the entorhinal, parietal, insular, and frontal cortices was demonstrated after irradiation at P21. Immunohistochemical study with cell division marker Ki67 and immature marker doublecortin (DCX) indicated the reduced cell division and genesis of new neurons in the subgranular zone of the dentate gyrus in the hippocampus after irradiation at all three postnatal days, but the reduction of total granule cells in the stratum granulosun was found after irradiation at P3 and P10. CONCLUSIONS: The early life radiation exposure during different developmental stages induces varied brain pathophysiological changes which may be related to the development of neurological and neuropsychological disorders later in life.


Assuntos
Encéfalo/efeitos da radiação , Irradiação Craniana/efeitos adversos , Neurogênese/efeitos da radiação , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327654

RESUMO

The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.


Assuntos
Epigênese Genética/fisiologia , Hipocampo/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Histonas/metabolismo , Humanos , MicroRNAs/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo
3.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041250

RESUMO

The present study aimed to explore the possible radioprotective effects of celastrol and relevant molecular mechanisms in an in vitro cell and in vivo mouse models exposed to gamma radiation. Human keratinocytes (HaCaT) and foreskin fibroblast (BJ) cells were exposed to gamma radiation of 20Gy, followed by treatment with celastrol for 24 h. Cell viability, reactive oxygen species (ROS), nitric oxide (NO) and glutathione (GSH) production, lipid peroxidation, DNA damage, inflammatory cytokine levels, and NF-κB pathway activation were examined. The survival rate, levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood, and p65 and phospho-p65 expression were also evaluated in mice after exposure to gamma radiation and celastrol treatment. The gamma irradiation of HaCaT cells induced decreased cell viability, but treatment with celastrol significantly blocked this cytotoxicity. Gamma irradiation also increased free radical production (e.g., ROS and NO), decreased the level of GSH, and enhanced oxidative DNA damage and lipid peroxidation in cells, which were effectively reversed by celastrol treatment. Moreover, inflammatory responses induced by gamma irradiation, as demonstrated by increased levels of IL-6, TNF-α, and IL-1ß, were also blocked by celastrol. The increased activity of NF-κB DNA binding following gamma radiation was significantly attenuated after celastrol treatment. In the irradiated mice, treatment with celastrol significantly improved overall survival rate, reduced the excessive inflammatory responses, and decreased NF-κB activity. As a NF-κB pathway blocker and antioxidant, celastrol may represent a promising pharmacological agent with protective effects against gamma irradiation-induced injury.


Assuntos
Prepúcio do Pênis/citologia , Raios gama/efeitos adversos , Queratinócitos/citologia , Protetores contra Radiação/farmacologia , Triterpenos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/efeitos da radiação , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/imunologia , Prepúcio do Pênis/efeitos da radiação , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/efeitos da radiação , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos da radiação , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Triterpenos Pentacíclicos , Fator de Necrose Tumoral alfa/metabolismo
4.
J Cell Biochem ; 120(3): 4504-4513, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260018

RESUMO

Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Iridoides/farmacologia , NF-kappa B/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Glucosídeos Iridoides , Células MCF-7
5.
Pharmacol Res ; 133: 195-200, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758279

RESUMO

Genipin, an aglycone derived from the iridoid glycoside, geniposide, is isolated and characterized from the extract of Gardenia jasminoides Ellis fruit (family Rubiaceae). It has long been used in traditional oriental medicine for the prevention and treatment of several inflammation driven diseases, including cancer. Genipin has been shown to have hepatoprotective activity acting as a potent antioxidant and inhibitor of mitochondrial uncoupling protein 2 (UCP2), and also reported to exert significant anticancer effects. It is an excellent crosslinking agent that helps to make novel sustained or delayed release nanoparticle formulations. In this review, we present the latest developments of genipin as an anticancer agent and briefly describe its diverse mechanism(s) of action. Several lines of evidence suggest that genipin is a potent inhibitor of UCP2, which functions as a tumor promoter in a variety of cancers, attenuates generation of reactive oxygen species and the expression of matrix metalloproteinase 2, as well as induces caspase-dependent apoptosis in vitro and in in vivo models. These finding suggests that genipin can serve as both a prominent anticancer agent as well as a potent crosslinking drug that may find useful application in several novel pharmaceutical formulations.


Assuntos
Antineoplásicos/uso terapêutico , Reagentes de Ligações Cruzadas/uso terapêutico , Iridoides/uso terapêutico , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Iridoides/farmacologia
6.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213136

RESUMO

As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Epilepsia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Humanos
7.
Curr Neurol Neurosci Rep ; 16(2): 20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769029

RESUMO

The mobilization of endogenous neural stem cells in order to substitute lost neurons in the adult brain may reduce the negative effects of patients with chronic neurodegenerative diseases. However, abnormal neurogenesis may be harmful and could lead to the worsening of patients' symptoms. In the brains of patients and animal models with temporal lobe epilepsy (TLE), increased newly generated neurons in the subgranular zone (SGZ) at early stages after brain insults have been speculated to be involved in epileptogenesis. However, this argument is unsupported by evidence showing that (1) hippocampal neurogenesis is reduced at chronic stages of intractable TLE, (2) decreased neurogenesis is involved in epileptogenesis, and (3) spontaneous recurrent seizures occur before newly generated neurons are integrated into hippocampal neural pathways. Therefore, the hypothesis of increased neurogenesis in epileptogenesis may need to be re-evaluated. In this paper, we systemically reviewed brain neurogenesis and relevant molecules in the regulation of neurogenesis in SGZ. We aimed to update researchers and epileptologists on current progresses on pathophysiological changes of neurogenesis at different stages of TLE in patients and animal models of TLE. The interactions among neurogenesis, epileptogenesis and cognitive impairment, and molecules' mechanism involved in neurogenesis would also be discussed. Future research directions are proposed at the end of this paper.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Neurogênese , Transtornos Cognitivos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Humanos , Células-Tronco Neurais , Neurônios/fisiologia , Convulsões/fisiopatologia
8.
Front Biosci (Landmark Ed) ; 28(2): 38, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36866558

RESUMO

Ischemic stroke and cranial radiotherapy may induce brain inflammatory response, oxidative stress, apoptosis and neuronal loss, and impairment of neurogenesis. Lycium barbarum has anti-oxidation, anti-inflammatory, anti-tumor and anti-aging properties, may produce both neuroprotective and radioprotective effects. In this narrative review paper, we described the neuroprotective effect of Lycium barbarum in different animal models of experimental ischemic stroke and limited studies in irradiated animal models. Relevant molecular mechanisms are also summarized. It has been shown that in experimental ischemic stroke models, Lycium barbarum produces neuroprotective effects by modulating neuroinflammatory factors such as cytokines and chemokines, reactive oxygen species, and neurotransmitter and receptor systems. In irradiation animal models, Lycium barbarum prevents radiation-induced loss of hippocampal interneurons. Given its minimal side-effects, these preclinical studies suggest that Lycium barbarum may be a promising radio-neuro-protective drug that can be used as an adjunct treatment to radiotherapy for brain tumor and in the treatment of ischemic stroke. At molecular levels, Lycium barbarum may regulate PI3K/Akt/GSK-3ß, PI3K/Akt/mTOR, PKCε/Nrf2/HO-1, keap1-Nrf2/HO-1, and NR2A and NR2B receptor- related signal transduction pathways to produce neuroprotective effects.


Assuntos
AVC Isquêmico , Lycium , Fármacos Neuroprotetores , Exposição à Radiação , Animais , Glicogênio Sintase Quinase 3 beta , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
9.
Cells ; 12(4)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831315

RESUMO

Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain unknown. In the present study, we employed immunohistochemistry and real-time RT-PCR to study the microglial activation and miRNA expression in mouse brains. Real-time RT-PCR, western blot, ELISA, cell proliferation and cytotoxicity assay were used in BV2 and mouse neural stem cells (NSCs). In the mouse model, we found the acute activation of microglia at 1 day and an increased number of microglial cells at 1, 7 and 120 days after irradiation at postnatal day 3 (P3), day 10 (P10) and day 21 (P21), respectively. In cell models, the activation of BV2, a type of microglial cell line, was observed after gamma irradiation. Real-time RT-PCR analysis revealed a deceased expression of miR-181b-2-3p and an increased expression of its target SRY-related high-mobility group box transcription factor 21 (SOX21) in a dose- and time-dependent fashion. The results of the luciferase reporter assay confirmed that SOX21 was the target of miR-181b-2-3p. Furthermore, SOX21 knockdown by siRNA inhibited the activation of microglia, thereby suggesting that the direct interaction of 181b-2-3p with SOX21 might be involved in radiation-induced microglial activation and proliferation. Interestingly, the gamma irradiation of NSCs increased miR-181b-2-3p expression but decreased SOX21 mRNA, which was the opposite of irradiation-induced expression in BV2 cells. As irradiation reduced the viability and proliferation of NSCs, whereas the overexpression of SOX21 restored the impaired cell viability and promoted the proliferation of NSCs, the findings suggest that the radiation-induced interaction of miR-181b-2-3p with SOX21 may play dual roles in microglia and NSCs, respectively, leading to the impairment of brain neurogenesis.


Assuntos
MicroRNAs , Células-Tronco Neurais , Camundongos , Animais , Microglia/metabolismo , MicroRNAs/genética , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Células-Tronco Neurais/metabolismo
10.
Biomolecules ; 13(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238624

RESUMO

The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Humanos , Epêndima/metabolismo , Epêndima/patologia , Fatores de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo
11.
Crit Rev Toxicol ; 42(8): 688-702, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22742653

RESUMO

Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.


Assuntos
Bronquiolite Obliterante/fisiopatologia , Substâncias para a Guerra Química/toxicidade , Neoplasias Pulmonares/fisiopatologia , Gás de Mostarda/toxicidade , Fibrose Pulmonar/fisiopatologia , Sistema Respiratório/efeitos dos fármacos , Animais , Bronquiolite Obliterante/etiologia , Modelos Animais de Doenças , Selectina E/metabolismo , Glutationa/metabolismo , Humanos , Irã (Geográfico) , Iraque , Neoplasias Pulmonares/etiologia , Óxido Nítrico Sintase/metabolismo , Ácido Peroxinitroso/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fibrose Pulmonar/etiologia , I Guerra Mundial
12.
Int J Radiat Biol ; 98(10): 1519-1531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311621

RESUMO

PURPOSE: With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION: Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.


Assuntos
Oligodendroglia , Qualidade de Vida , Animais , Diferenciação Celular , Linhagem da Célula , Sistema Nervoso Central , Bainha de Mielina , Oligodendroglia/patologia , Oligodendroglia/fisiologia
13.
Aging (Albany NY) ; 14(3): 1562-1588, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165207

RESUMO

Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, "painful impediment caused by wind-dampness," numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer's disease, cerebral ischemia, depression, Parkinson's disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.


Assuntos
Lesões Encefálicas , Epimedium , Fármacos Neuroprotetores , Exposição à Radiação , Envelhecimento , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
Curr Med Chem ; 28(10): 1970-1986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32520676

RESUMO

Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.


Assuntos
Astrócitos , Conexinas , Doenças do Sistema Nervoso , Exposição à Radiação , Células Endoteliais , Humanos
15.
Curr Med Chem ; 28(1): 19-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31965936

RESUMO

Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.


Assuntos
Doença de Alzheimer , Depressão , MicroRNAs , Neurogênese , Exposição à Radiação/efeitos adversos , Esquizofrenia , Doença de Alzheimer/genética , Biomarcadores , Depressão/genética , Humanos , MicroRNAs/genética , Radiação Ionizante , Esquizofrenia/genética
16.
Aging (Albany NY) ; 13(12): 15815-15832, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162763

RESUMO

Gamma H2A histone family member X (γH2AX) is a molecular marker of aging and disease. However, radiosensitivity of the different brain cells, including neurons, glial cells, cells in cerebrovascular system, epithelial cells in pia mater, ependymal cells lining the ventricles of the brain in immature animals at different postnatal days remains unknown. Whether radiation-induced γH2AX foci in immature brain persist in adult animals still needs to be investigated. Hence, using a mouse model, we showed an extensive postnatal age-dependent induction of γH2AX foci in different brain regions at 1 day after whole body gamma irradiation with 5Gy at postnatal day 3 (P3), P10 and P21. P3 mouse brain epithelial cells in pia mater, glial cells in white matter and cells in cerebrovascular system were more radiosensitive at one day after radiation exposure than those from P10 and P21 mice. Persistent DNA damage foci (PDDF) were consistently demonstrated in the brain at 120 days and 15 months after irradiation at P3, P10 and P21, and these mice had shortened lifespan compared to the age-matched control. Our results suggest that early life irradiation-induced PDDF at later stages of animal life may be related to the brain aging and shortened life expectancy of irradiated animals.


Assuntos
Giro Denteado/metabolismo , Giro Denteado/efeitos da radiação , Raios gama , Histonas/metabolismo , Animais , Animais Recém-Nascidos , Camundongos , Análise de Sobrevida , Fatores de Tempo
17.
Seizure ; 84: 122-128, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33348235

RESUMO

The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.


Assuntos
Astrócitos , Conexinas , Animais , Comunicação Celular , Junções Comunicantes , Humanos , Neurônios
18.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944078

RESUMO

Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer's disease and Parkinson's disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.


Assuntos
Encéfalo/patologia , Senescência Celular/efeitos da radiação , Radiação Ionizante , Animais , Autofagia/efeitos da radiação , Humanos , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos da radiação
19.
Dose Response ; 19(4): 15593258211057768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887716

RESUMO

Background: Brain exposure to ionizing radiation during the radiotherapy of brain tumor or metastasis of peripheral cancer cells to the brain has resulted in cognitive dysfunction by reducing neurogenesis in hippocampus. The water extract of Lycium barbarum berry (Lyc), containing water-soluble Lycium barbarum polysaccharides and flavonoids, can protect the neuronal injury by reducing oxidative stress and suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN, calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve irradiation-induced animal weight loss, depressive behaviors, spatial memory impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus, CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum of the dentate gyrus after irradiation were significantly improved by Lyc treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal neurons may benefit the configuration of learning related neuronal networks and then improve radiation induced neurobehavioral changes such as cognitive impairment and depression. It suggests that Lycium barbarum berry may be an alternative food supplement to prevent radiation-induced neuron loss and neuropsychological disorders.

20.
Curr Med Chem ; 16(17): 2189-204, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19519386

RESUMO

The anticonvulsant and neuroprotective properties of agonist and antagonist of metabotropic glutamate receptors (mGluRs) have been known for 15 years or so. However, it is not yet clear whether these agents, and allied compounds, can be considered as candidate drugs for eventual use in the clinic to control the development of epilepsy, (i.e. as anti- epileptogenics), or for the control of seizures themselves (i.e. as anticonvulsants). In fact, few studies have been designed to test for these properties by, for instance, administering these agents during the chronic stages of experimental epilepsy to determine whether a tendency to generate spontaneously recurrent seizures, which often appear by epileptogenesis, could be prevented or stopped. Even in the acute stages, there are substantial differences in experimental design between the published studies. Thus, there are large variations in such factors as timing, and the route of administration of candidate drugs, the age, or species and strain of experimental animal used, and the experimental epilepsy model employed. Such variations often make it difficult to accurately assess the anticonvulsant, neuroprotective and anti-epileptogenic properties of each candidate drug across a wide range of studies. This paper, will review neuroanatomical, neurochemical, neuropharmacological studies of mGluRs in animal models and in patients with temporal lobe epilepsy, and summarize anticonvulsive and neuroprotective effects of their agonists and antagonists in different seizure and epilepsy models in order to give direction for the development of new generation anti-epileptogenic and anticonvulsive drugs.


Assuntos
Anticonvulsivantes/química , Desenho de Fármacos , Epilepsia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Epilepsia/metabolismo , Epilepsia do Lobo Frontal/tratamento farmacológico , Epilepsia do Lobo Frontal/metabolismo , Humanos , Estrutura Molecular , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA