RESUMO
Efficient Auger recombination (AR) presents a significant challenge for the advancement of colloidal quantum dot (QD)-based devices involving multiexcitons. Here, the AR dynamics of near-infrared Ag2Se QDs were studied through transient absorption experiments. As the QD radius increases from 0.9 to 2.5 nm, the biexciton lifetime (τ2) of Ag2Se QDs increases from 35 to 736 ps, which is approximately 10 times longer than that of comparable-sized CdSe and PbSe QDs. A qualitative analysis based on observables indicates that the slow Auger rate is primarily attributed to the low density of the final states. The biexciton lifetime and triexciton lifetime (τ3) of Ag2Se QDs follow R3 and R2.6 dependence, respectively. Moreover, the ratio of τ2/τ3 is â¼2.3-3.2, which is markedly lower than the value expected from statistical scaling (4.5). These findings suggest that environmentally friendly Ag2Se QDs can serve as excellent candidates for low-threshold lasers and third-generation photovoltaics utilizing carrier multiplication.
RESUMO
Heat stress (HS) affects poultry production and welfare, causing enormous damage to poultry. Resveratrol, an antioxidant and anti-inflammatory natural plant polyphenol, is widely used in agriculture for the prevention of oxidative stress-related diseases. This study aimed to explore the effects and potential mechanism of resveratrol on liver oxidative damage in heat-stressed broilers. Sixty SPF chickens were randomly divided into control, heat stress (HS) and HS+ resveratrol (resveratrol) groups. Broilers were exposed to 35 ± 2 â (8 h/d) for 7 consecutive days to induce HS, and the other 16 h/d were kept at 23 ± 2 â, similar to the control group. Broilers received 400 mg/kg resveratrol in the basic diet 2 days before exposure to HS and for the following 7 days. The results showed that resveratrol improved growth performance by increasing the average daily gain (ADG) and reducing the feed conversion ratio (FCR), compared with the HS group. Heat stress reduced liver weight and index, increased inflammatory cell infiltration in the liver, enhanced serum AST levels, and decreased TP and ALB II levels, which resulted in liver injury in broilers, and resveratrol effectively alleviated liver injury. Moreover, supplementation with resveratrol enhanced the activities of liver antioxidant enzymes resulting in higher GPX and SOD levels than those in the heat-stressed broilers, and decreased MDA levels. Furthermore, resveratrol alleviated liver oxidative stress by activating the gene and protein levels of Nrf2 and HO-1, enhancing NQO1 and SOD1 gene levels, and decreasing protein levels of HSP70, p62, and Keap1, and thereby alleviated the liver injury of heat-stressed broilers. Compared with the HS group, Nrf2 immunofluorescence was significantly up-regulated in the livers of resveratrol group. These results suggest that resveratrol can enhance the liver antioxidant function by activating the Nrf2-Keap1 signaling pathway to promote growth performance in broilers under HS.
Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Galinhas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Dieta/veterinária , Estresse Oxidativo , Fígado/metabolismo , Resposta ao Choque Térmico , Transdução de Sinais , Ração Animal/análiseRESUMO
The purpose of this study was to investigate the effects of resveratrol on heat stress-induced lung injury in broilers and the mechanism underlying this process. Sixty two-week-old SPF BWEL broilers were randomly divided into the heat stress group (HS), resveratrol group (heat stress + 400 mg/kg resveratrol), and the control group after one week of feeding, with 20 chickens in each group. Broilers in the control group were reared at 23 ± 2 â. Those in the HS and resveratrol group were reared under heat stress (35 â ± 2 â) for 8 h/day for seven days. Broilers in the resveratrol group were fed a diet supplemented with 400 mg/kg resveratrol two days before the start of the experiment. The feeding was continued for nine days. The results showed that HS decreased body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), and lung weight. It, however, increased the lung index, induced lung congestion, and promoted infiltration of inflammatory cells to the lung. Resveratrol improved growth performance and inhibited heat stress-induced lung damage. Compared with broilers in the control group, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), Beclin-1, LC3 â , and LC3 â ¡ genes in the lung of heat-stressed broilers was significantly lower. The levels of kelch-like ECH-associated protein 1 (Keap1), NQO1, and HO-1 showed a similar trend with gene expressions. Immunofluorescence indicated that HS inhibited the expression of Nrf2 and LC3B proteins. Finally, the ratio of LC3 â ¡/LC3 â was also significantly lower in the HS group. Further analyses revealed that resveratrol supplements in feeds enhanced antioxidation in the lung by activating the Nrf2 signaling pathway and autophagy. In conclusion, HS causes oxidative damage and inhibits autophagy in broilers. However, resveratrol protects against lung injury by alleviating oxidative stress and enhancing autophagy.
Assuntos
Galinhas , Lesão Pulmonar , Animais , Resveratrol/farmacologia , Galinhas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Estresse Oxidativo , Resposta ao Choque Térmico , Transdução de Sinais , Pulmão/metabolismo , Autofagia , Ração Animal/análiseRESUMO
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (Pï¼0.05). The histopathological alterations and proinflammatory cytokines (IL-1ß, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (Pï¼0.05), and enhancing malondialdehyde (MDA) content (Pï¼0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1ß and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Inflamassomos/metabolismo , Fígado , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismoRESUMO
Regarding the interpretable techniques in the field of image recognition, Grad-CAM is widely used for feature localization in images to reflect the logical decision-making information behind the neural network due to its high applicability. However, extensive experimentation on a customized dataset revealed that the deep convolutional neural network (CNN) model based on Gradient-weighted Class Activation Mapping (Grad-CAM) technology cannot effectively resist the interference of large-scale noise. In this article, an optimization of the deep CNN model was proposed by incorporating the Dropkey and Dropout (as a comparison) algorithm. Compared with Grad-CAM, the improved Grad-CAM based on Dropkey applies an attention mechanism to the feature map before calculating the gradient, which can introduce randomness and eliminate some areas by applying a mask to the attention score. Experimental results show that the optimized Grad-CAM deep CNN model based on the Dropkey algorithm can effectively resist large-scale noise interference and achieve accurate localization of image features. For instance, under the interference of a noise variance of 0.6, the Dropkey-enhanced ResNet50 model achieves a confidence level of 0.878 in predicting results, while the other two models exhibit confidence levels of 0.766 and 0.481, respectively. Moreover, it exhibits excellent performance in visualizing tasks related to image features such as distortion, low contrast, and small object characteristics. Furthermore, it has promising prospects in practical computer vision applications. For instance, in the field of autonomous driving, it can assist in verifying whether deep learning models accurately understand and process crucial objects, road signs, pedestrians, or other elements in the environment.
RESUMO
In this study, a novel method for the disposal of municipal solid waste incineration fly ash (MSWIFA) was proposed. By applying geopolymer technology, steel slag (SS) and MSWIFA were used together as precursors to synthesize a cementitious material with sufficient strength that is useable in construction. The effects of the dosages of SS and alkaline activator on the properties of the geopolymer were investigated. Compressive testing was used to characterize the mechanical properties of the geopolymer. X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for microscopic analysis. Leaching tests were performed to assess the immobilization effect of the geopolymer on heavy metals. The results showed that the compressive strength of the geopolymer reached 23.03 MPa at 56 d with 20% SS and 11% Na2O admixture. Highly polymerized hydration products, such as C-(A)-S-H gels and N-A-S-H gels, contributed to the compact microstructure, which provided mechanical strength and limited the migration and leaching of heavy metals in the geopolymer matrix. In terms of the results, this work is significant for the development of MSWIFA management.
Assuntos
Metais Pesados , Eliminação de Resíduos , Incineração/métodos , Cinza de Carvão/química , Resíduos Sólidos/análise , Metais Pesados/análise , Difração de Raios X , Eliminação de Resíduos/métodos , Carbono/química , Material ParticuladoRESUMO
BACKGROUND: This study investigated the effects of chronic heat stress on liver inflammatory injury and its potential mechanisms in broilers. Chickens were randomly assigned to the 1-week control group (Control 1), 1-week heat stress group (HS1), 2-week control group (Control 2), and a 2-week heat stress group (HS2) with 15 replicates per group. Broilers in the heat stress groups were exposed to heat stress (35 ± 2 °C) for 8 h/d for 7 or 14 consecutive days, and the rest of 26 hours/day were kept at 23 ± 2 °C like control group broilers. Growth performance and liver inflammatory injury were examined for the analysis of liver injury. RESULTS: The results showed that heat stress for 2 weeks decreased the growth performance, reduced the liver weight (P < 0.05) and liver index (P < 0.05), induced obvious bleeding and necrosis points. Liver histological changes found that the heat stress induced the liver infiltration of neutrophils and lymphocytes in broilers. Serum levels of AST and SOD were enhanced in HS1 (P < 0.01, P < 0.05) and HS2 (P < 0.01, P < 0.05) group, compared with control 1 and 2 group broilers. The MDA content in HS1 group was higher than that of in control 1 group broilers (P < 0.05). Both the gene and protein expression levels of HSP70, TLR4 and NF-κB in the liver were significantly enhanced by heat stress. Furthermore, heat stress obviously enhanced the expression of IL-6, TNF-α, NF-κB P65, IκB and their phosphorylated proteins in the livers of broilers. In addition, heat stress promoted the activation of NLRP3 with increased NLRP3, caspase-1 and IL-1ß levels. CONCLUSIONS: These results suggested that heat stress can cause liver inflammation via activation of the TLR4-NF-κB and NLRP3 signaling pathways in broilers. With the extension of heat stress time, the effect of heat stress on the increase of NF-κB and NLRP3 signaling pathways tended to slow down.
Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Galinhas/metabolismo , Resposta ao Choque Térmico , Inflamação/veterinária , Fígado/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismoRESUMO
This study aimed to investigate the protective effect and potential mechanism of Yinhuang oral liquid (YOL) against acetaminophen (APAP) induced liver injury in mice. C57BL/6 mice were randomly divided into control group, model group (300 mg/kg APAP), NAC group and YOL group. Mice were treated intragastrical with YOL (8 g/kg) and N-Acetylcysteine (NAC, 300 mg/kg) 6 h before and 6 h after the APAP (300 mg/kg) intraperitoneal injection. 12 h after APAP exposure, blood and liver samples were collected for subsequent testing. The results showed that APAP decreased liver index, induced liver pathological injury with hepatocytes swelling, necrosis and apoptosis and inflammatory cell infiltration. APAP exposure significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels to 35 and 6 multiples than their original levels. YOL alleviated liver pathological damage, decreased the serum levels of ALT and AST in APAP exposure mice, and it worked better than NAC. Moreover, APAP promoted oxidative stress by increasing lipid peroxidation (MDA) and decreasing anti-oxidant enzyme activities of SOD and GSH, inhibited the mRNA levels of Nrf2, HO-1, Gclc and Gclm, and decreased the protein levels of Nrf2, HO-1 and Keap1, compared to control group. Furthermore, APAP exposure significantly down-regulated the mRNA and protein levels of autophagy related genes (Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7). However, the gene levels of mTOR and p-mTOR increased, and p-ULK1 protein level decreased in liver of APAP treated mice. Additionally, YOL alleviated the oxidative injury by up-regulating Nrf2 pathway. The gene and protein levels of autophagy-related genes Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7 reached the basal levels after YOL treatment. In conclusion, YOL had a protective and therapeutic role in APAP-induced liver injury in mice by activating Nrf2 signaling pathway and autophagy.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Alanina Transaminase/metabolismo , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
In a D2D (device-to-device) communication system, this paper proposes a relay selection strategy based on social perception. Firstly, the social threshold is introduced into the D2D relay network to screen and filter the potential relay users, thus effectively reducing the detection cost. Then, an auction algorithm is used to motivate the relay users to increase their transmission power. The simulation results show that the algorithm not only improves the throughput but also reduces the probability of a system outage.
Assuntos
Algoritmos , Percepção Social , Probabilidade , Simulação por ComputadorRESUMO
Exploring the temperature-dependent photoluminescence (PL) properties of quantum dots (QDs) is not only important for understanding the carrier recombination processes in QD-based devices but also critical for expanding their special applications at different temperatures. However, there is still no clear understanding of the optical properties of CdS/ZnS core/shell QDs as a function of temperature. Herein, the temperature-dependent PL spectra of CdS/ZnS core/shell QDs were studied in the temperature range of 77-297 K. It was found that the band-edge emission (BEE) intensity decreases continuously with increasing temperature, while the surface-state emission (SSE) intensity first increases and then decreases. For BEE intensity, in the low temperature range, a small activation energy (29.5 meV) in the nonradiative recombination process led to the decrease of PL intensity of CdS/ZnS core/shell QDs; and at high temperature the PL intensity attenuation was caused by the thermal escape process. On the other hand, the temperature-dependent variation trend of the SSE intensity was determined by the competition of the trapping process of the surface trap states and the effect of thermally activated non-radiative defects. As the temperature increased, the PL spectra showed a certain degree of redshift in the peak energies of both band-edge and surface states and the PL spectrum full width at half-maximum (FWHM) increases, which was mainly due to the coupling of exciton and acoustic phonon. Furthermore, the CIE chromaticity coordinates turned from (0.190, 0.102) to (0.302, 0.194), which changed dramatically with temperature. The results indicated that the CdS/ZnS core/shell QDs are expected to be applied in temperature sensors.
RESUMO
The hydration shell (HS) has a critical impact on every contact between hydrated species, which is a prerequisite for a great many physical and chemical processes, such as ion adsorption at the solution-solid interface. This paper reveals the extent and manner to which the HS interferes with ion adsorption utilizing molecular dynamics. The single-layer HS is the smallest unit that maintains the ionic hydration structure and the force on it. The energy penalty incurred by partial dehydration upon adsorption is one of the approaches through which HS influences ion adsorption, yet the collision of water molecules in HS may be the critical one. The repulsive force during dehydration is, to great extent, neutralized by HS collision. The index for estimating the extent of the influence of the HS is not the hydration energy, but the quantification of the contest between HS' collision and the binding of adsorption sites. The hydration energy is larger for charged functional groups, but the HS' impact is much smaller, as compared with electroneutral group cases. As a result, the order of the adsorption capacity for different ionic species may be quite different between charged and electroneutral cases.
RESUMO
With the global warming, the harm of heat stress (HS) to the breeding industry has become more common, which causes the decline of animal production performance and low immunity. This study aimed to analyze the effect of HS on the intestinal immune function of Salmonella-infected chickens. Fourteen-day-old broilers were divided into the following four groups of eight replicates: control (Control), heat stress (HS), Salmonella Typhimurium (ST), and heat stress + Salmonella Typhimurium (HS+ST). The broilers were subjected to a heat stress of 35 °C from 15 to 28 days of age. Salmonella Typhimurium (ST, 14028, 109 cfu/mL) was inoculated, via oral administration at 29 days of age, into ST and HS+ST group birds. On the 4th day after Salmonella Typhimurium administration, an increase in jejunum IgA levels was observed in chickens infected with Salmonella Typhimurium. Mechanistic regulation of TLR4-NFκB-NLRP3 and TLR4-TBK1 signaling by heat stress was evaluated in Salmonella Typhimurium-infected broilers. Heat stress markedly inhibited the expression of cytokines including TNF-α, IL-6, IL-1ß, NLRP3, caspase-1, NF-κB-p65, and p-NF-κB-p65, and the TLR4-TBK1 cytokines IFN-α, IFN-γ, p-IRF3, and p-TBK1 in jejunum of broilers infected with Salmonella Typhimurium. Collectively, our results demonstrate that heat stress can inhibit intestinal immune response by downregulating the expression of TLR4-NFκB-NLRP3 and TLR4-TBK1 signaling pathways in broilers infected with Salmonella Typhimurium.
Assuntos
Galinhas , NF-kappa B , Animais , Resposta ao Choque Térmico , Salmonella typhimurium , Receptor 4 Toll-Like/genéticaRESUMO
High ambient temperature has potential influence on oxidative stress, or systemic inflammation affecting poultry production and immune status of chickens. Heat stress (HS) induces intestinal inflammation and increases susceptibility of harmful pathogens, such as Salmonella and Escherichia coli. Intestinal inflammation is a common result of body immune dysfunction. Therefore, we designed an experiment to analyze the effects of 35 ± 2 °C HS on salmonella infection in chickens through regulation of the immune responses. 40 broiler chickens were randomly divided into 4 groups: control group, heat stress (HS) group, salmonella typhimurium (ST) group and model group (heat stress + salmonella typhimurium, HS + ST). Birds in HS and model group were treated with 35 ± 2 °C heat stress 6 h a day and for 14 continuous days. Then, ST and model group birds were orally administrated with 1 mL ST inoculum (109 cfu/mL). Chickens were sacrificed at the 4th day after ST administration and ileum tissues were measured. We observed that heat stress decreased ileum TNF-α and IL-1ß protein expressions. Concomitantly heat stress decreased NLRP3 and Caspase-1 protein levels. The protein expressions of p-NF-κB-p65 and p-IκB-α in ileum. Heat stress also inhibited IFN-α, p-IRF3 and p-TBK1, showing a deficiency in the HS + ST group birds. Together, the present data suggested that heat stress suppressed intestinal immune activity in chickens infected by salmonella typhimurium, as observed by the decrease of immune cytokines levels, which regulated by NF-κB-NLRP3 signaling pathway.
Assuntos
Galinhas/imunologia , Transtornos de Estresse por Calor/imunologia , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium , Animais , Proteínas Aviárias/imunologia , Galinhas/microbiologia , Citocinas/imunologia , Transtornos de Estresse por Calor/patologia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Íleo/imunologia , Íleo/patologia , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Doenças das Aves Domésticas/patologia , Proteínas Serina-Treonina Quinases/imunologia , Salmonelose Animal/patologia , Transdução de SinaisRESUMO
Poor bonding strength between nanomaterials and cement composites inevitably lead to the failure of reinforcement. Herein, a novel functionalization method for the fabrication of functionalized graphene oxide (FGO), which is capable of forming highly reliable covalent bonds with cement hydration products, and therefore, suitable for use as an efficient reinforcing agent for cement composites, is discussed. The bonding strength between cement and aggregates was improved more than 21 times with the reinforcement of FGO. The fabricated FGO also demonstrated many important features, including high reliability in cement pastes, good dispersibility, and efficient structural refinement of cement hydration products. With the incorporation of FGO, cement mortar samples demonstrated up to 40 % increased early and ultimate strength. Such results make the fast demolding and manufacture of light constructions become highly possible, and show strong advantages on improving productivity, saving cost, and reducing CO2 emissions in practical applications.
RESUMO
The surface energy and surface stability of Ag nanocrystals (NCs) are under debate because the measurable values of the surface energy are very inconsistent, and the indices of the observed thermally stable surfaces are apparently in conflict. To clarify this issue, a transmission electron microscope is used to investigate these problems in situ with elaborately designed carbon-shell-capsulated Ag NCs. It is demonstrated that the {111} surfaces are still thermally stable at elevated temperatures, and the victory of the formation of {110} surfaces over {111} surfaces on the Ag NCs during sublimation is due to the special crystal geometry. It is found that the Ag NCs behave as quasiliquids during sublimation, and the cubic NCs represent a featured shape evolution, which is codetermined by both the wetting equilibrium at the Ag-C interface and the relaxation of the system surface energy. Small Ag NCs (≈10 nm) no longer maintain the wetting equilibrium observed in larger Ag NCs, and the crystal orientations of ultrafine Ag NCs (≈6 nm) can rotate to achieve further shape relaxation. Using sublimation kinetics, the mean surface energy of Ag NCs at 1073 K is calculated to be 1.1-1.3 J m-2 .
RESUMO
Resveratrol, a famous plant-derived polyphenolic phytoalexin, has been considered to play physiological roles such as antioxidative, neuroprotective, and anticancer effects in adults. However, its antioxidative activity and neuroprotective effect were seldom discussed in the embryonic system. In this study, the effect of resveratrol on chicken embryo development under high glucose and its underlying mechanism of resveratrol were investigated. High glucose administrated to chicken embryo at embryonic Day 1 induced stillbirth, growth retardation, and impaired blood vessel development on yolk sac. However, resveratrol supplementation before glucose exposure showed significant effect on decreasing the death rate, developmental damage, and vessel injury. In addition, oxidative stress was caused by high-glucose exposure, and resveratrol could rescue this high-glucose-induced oxidative stress. Moreover, the neural developmental marker paired box 3 was significantly decreased by high glucose and recovered by resveratrol. Cell cycle-regulated gene expression was also intervened by resveratrol. This study had found an association between resveratrol and hyperglycemia-induced embryonic damage, which suggested a potential protective effect of resveratrol on gestational diabetes.
Assuntos
Glucose/toxicidade , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Produtos Biológicos/farmacologia , Galinhas , Glucose/análise , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Estilbenos/químicaRESUMO
This study aimed to develop a suitable dosage form of volatile oil from wampee leaves and to explore its antibacterial mechanism in vitro. The chemical composition of the volatile oil from wampee leaves was determined by gas chromatography-mass spectrometry (GC-MS). Different microemulsion ratios were tested and their stabilities were investigated to determine the optimal ratio. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the wampee leaves volatile oil emulsion (WVOE) against Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) were determined using double-dilution and plate-counting methods, respectively. Morphological changes in these two bacteria were observed using scanning electron microscopy. Death, ultrastructural morphology, and biofilm formation were also assessed for S. aureus. Finally, we established an S. aureus-infected Lewis lung carcinoma (LLC) cell model to evaluate the protective effects of the volatile oil emulsion and the associated mechanisms. The volatile oil extracted from wampee leaves contained 37 compounds, of which 96.49% were aromatic hydrocarbons, terpenoids, and their oxygen-containing derivatives. The emulsion was most stable at 1:1 in the oil phase and 1:9 in the water phase. WVOE had poor antibacterial activity against S. typhimurium, but the MIC and MBC against S. aureus were 312.5 and 2,500 µg/mL, respectively. S. aureus survival rates were 84.6%, 14.5%, and 12.8% in the 1/2, 1, and 4 × MIC groups, respectively, compared with 97.2% in the control group. S. typhimurium survival was not affected by WVOE treatment. WVOE administration induced cavity formation and abnormal binary fission, and significantly inhibited biofilm formation in S. aureus cells. The WVOE notably reduced the number of S. aureus and inhibited TLR4, NLRP3, NF-κB, IL-6, IL-18, and TNF-α gene expression in S. aureus-infected LLC cells. The WVOE had a significant inhibitory effect on S. aureus and altered its cell membrane permeability. Moreover, it alleviated inflammation by inhibiting the NF-κB-NLRP3 pathway in S. aureus-infected LLC cells.
RESUMO
In order to study the prevention and control EHEC disease measures in poultry, the infection process and development of this disease and the pathological changes of various organs were to be observed. In this study, chickens were infected with different doses of enterohemorrhagic Escherichia coli (EHEC) O157:H7 using different routes of administration to establish EHEC broiler model. A total of 195 14-day-old broilers were randomly divided into 13 groups: including control group, Enema-drip groups (1010, 1011, 1012, 1013 CFUs E. coli O157:H7), gavage groups (P.O) (1011, 1012, 1013, 1014 CFUs E. coli O157:H7), and intraperitoneal injection group (I.P.) (108, 109, 1010, 1011 CFUs E. coli O157:H7). Escherichia coli (E. coli) was given using enema-drip, gavage or intraperitoneal infection. Then the feed intake, weight changes, stool and clinical symptoms of the chicks were recorded during the experiment. 7 d after E. coli infection, blood was collected from the jugular vein and serological tests were carried out. The liver, spleen, and colon of the chicks were extracted to get the organ index, bacteria load, and their histopathological changes. After infection with E. coli, some chicks feces were green or red watery stool, sometimes accompanied by foam, and the material to weight ratio of broilers in I.P. group increased significantly (P < 0.05), the 108 CFUs group were 1.3 times as large as control group. Three modeling methods can result in abnormal serum lipid metabolism and liver function indexes (increase of AST, TBA, T-Bil and TC level; decrease of ALB, TG, and TP level). Infection of chicks with O157:H7 by all 3 methods resulted in its detection in the liver, spleen, and colon. Three modeling methods significantly decreased liver index, and inflammatory cell infiltration and hyperemia were observed in liver. The spleen index in E. coli broilers by gavage and enema-drip was significantly decreased, splenic hyperemia and periarteriolar hyalinosis were observed. The spleen was enlarged with purplish-black spheroids in I.P. group broilers, and the spleen histological changes was more serious. The colon villi of broilers in gavage and enema-drip groups were thinner, more prone to rupture, intestinal lamina propria hyperemia, and inflammatory cell infiltration. Moreover, the number of goblet cells in the mucosal epithelium increased. E. coli O157:H7 can induce liver, spleen and intestinal damage and reduce growth performance of chicks. By comparing these 3 methods, we found that chicks infected with O157:H7 by gavage had more severe liver and intestinal damage, the enema-drip method caused most serious intestinal damage, and I.P. method significantly damaged the liver and spleen of chickens.
Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Hiperemia , Animais , Galinhas , Hiperemia/veterinária , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologiaRESUMO
BACKGROUND: Volatile oil from fresh Clausena lansium (Lour.) Skeels (Rutaceae) (common name Wampee) has been previously extracted by our group from fresh C. lansium leaf and its components were qualitative and quantitatively analyzed by GC-MS. It altered the cell membrane permeability of Staphylococcus aureus and reduced the levels of inflammation factors. However, previous in vivo reports on the anti-inflammatory and the antibacterial properties against S. aureus are scarce. HYPOTHESIS/PURPOSE: To evaluate the protective in vivo effects of Wampee leaves volatile oil emulsion (WVOE) against S. aureus-induced pneumonia and elucidate the underlying mechanisms of action. METHODS: Wild-type and nucleotide oligomerization domain-like receptor protein 3 (NLRP3)-deficient mice were used. Mice were treated with WVOE for 7 days, and subjected to S. aureus infection by nasal administration on day 5 for 48 h. Lung and blood samples were collected for assessing lung damage and protein abundance. Lung bacterial load, wet/dry ratio, C-reactive protein (CRP) levels, inflammatory cytokines secretion, and lung histopathological injury were examined. RESULTS: WVOE effectively reduced lung bacterial load, wet/dry ratio, and CRP levels increased following S. aureus infection in mice. WVOE decreased the secretion of inflammatory cytokines (IL-6 and TNF-α) and lung histopathological injury, and suppressed the NF-κB pathway and NLRP3 inflammasome activation. NLRP3-/- mice exhibited lower bacterial load, inflammatory cytokines levels and lung histopathological injury compared with mice in the model group. Autophagy was enhanced in S. aureus-infected mice, with higher levels of p-mTOR, Beclin-1, Atg 16L1, Atg7, p62, p-p62, and LC3II. WVOE administration restored the autophagy related protein levels. Autophagy was inhibited in NLRP3-/- mice of the control and model groups, and WVOE lost its ability to regulate the autophagy-related proteins enhanced upon S. aureus infection. WVOE enhanced autophagy to alleviate lung injury by inhibiting NLRP3-targeted P62. Furthermore, compared with the 3MA + model group, WVOE reduced the bacterial load and CRP levels, pulmonary septa narrowing, and congestion. NLRP3 protein expression increased due to autophagy inhibition. WVOE exerted a pharmacological effect through the PI3K/AKT/mTOR pathway. CONCLUSION: WVOE regulated the PI3K/AKT/mTOR pathway and enhanced autophagy, with NLRP3 playing a crucial role. WVOE exhibited protective effects against S. aureus-induced pneumonia by inhibiting NLRP3 inflammasome activation and enhancing autophagy. These findings expand the understanding of antibacterial properties of WVOE, and provide novel insights into the therapeutic potential of WVOE in managing S. aureus infections.