RESUMO
OBJECTIVES: A study was conducted to investigate the molecular mechanism of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) influencing the invasion and metastasis of tongue squamous cell carcinoma and to provide a new target for clinical inhibition of invasion and metastasis of tongue squamous cell carcinoma. METHODS: Ualcan website was used to analyze the expression of CHD1L in normal epithelial tissue and primary head and neck squamous cell carcinoma and to analyze the effect of lymph node metastasis on the expression of CHD1L in tissues with head and neck squamous cell carcinoma. The relationship between CHD1L expression and the survival rate of patients with head and neck squamous cell carcinoma was tested by the GEPIA website. Western blot was used to quantify the levels of CHD1L protein in human tongue squamous cell carcinoma CAL27 and immortalized human skin keratinocyte cell HaCaT. After knocking down CAL27 in human tongue squamous cell carcinoma cells with an RNA interference plasmid, the cells were designated as SiCHD1L/CAL27 and Scr/CAL27. Western blot was utilized to detect the expression of CHD1L in each group of cells. The change in CAL27 cell proliferation ability was tested by EdU proliferation test after CHD1L knockdown. The change of cell migration ability of each group cells was tested through the wound healing assay. Western blot was used to detect epithelial-mesenchymal transition (EMT) marker E-cadherin and Vimentin protein expression levels. RESULTS: Ualcan database showed that the expression of CHD1L in primary head and neck squamous cell carcinoma tissues was higher than in normal epithelial tissues and in head and neck squamous cell carcinoma tissues with lymph node metastasis. GEPIA website analysis showed that the overall survival rate of patients with head and neck squamous cell carcinoma with high expression of CHD1L was significantly lower than that of patients with low expression. Western blot results showed that CHD1L expression in human tongue squamous carcinoma cells CAL27 was higher than that of human normal skin cells HaCaT. CHD1L expression in SiCHD1L/CAL27 cells was much lower than that in Scr/CAL27 cells. Results of EdU proliferation experiments showed the significant reduction in the cell proliferation ability of the SiCHD1L/CAL27 cells. Results of the wound healing experiments showed the reduction in the migration capacity of the SiCHD1L/CAL27 cells. The expression of E-cadherin increased, whereas that of Vimentin decreased, in SiCHD1L/CAL27 cells. CONCLUSIONS: CHD1L promoted the EMT, proliferation, migration, and invasion ability of tongue squamous cell carcinoma cells.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Adenosina Trifosfatases , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA Helicases , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Língua , Neoplasias da Língua/genéticaRESUMO
Areca palm yellow leaf (AYL) disease caused by the 16SrI group phytoplasma is a serious threat to the development of the Areca palm industry in China. The 16S rRNA gene sequence was utilized to establish a rapid and efficient detection system efficient for the 16SrI-B subgroup AYL phytoplasma in China by loop-mediated isothermal amplification (LAMP). The results showed that two sets of LAMP detection primers, 16SrDNA-2 and 16SrDNA-3, were efficient for 16SrIB subgroup AYL phytoplasma in China, with positive results appearing under reaction conditions of 64oC for 40 min. The lowest detection limit for the two LAMP detection assays was the same at 200 ag/µl, namely approximately 53 copies/µl of the target fragments. Phytoplasma was detected in all AYL disease samples from Baoting, Tunchang, and Wanning counties in Hainan province using the two sets of LAMP primers 16SrDNA-2 and 16SrDNA-3, whereas no phytoplasma was detected in the negative control. The LAMP method established in this study with comparatively high sensitivity and stability, provides reliable results that could be visually detected, making it suitable for application and research in rapid diagnosis of AYL disease, detection of seedlings with the pathogen and breeding of disease-resistant Areca palm varieties.