RESUMO
Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.
Assuntos
Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/genética , Células COS , Cálcio/metabolismo , Canais de Cálcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Osteogênese/genética , Alinhamento de SequênciaRESUMO
Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.
Assuntos
Endodesoxirribonucleases , Neoplasias , Peptídeos , Poli ADP Ribosilação , RNA Longo não Codificante , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Peptídeos/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Ca2+ release from the endoplasmic reticulum (ER) is an essential event in the modulation of Ca2+ homeostasis, which is coordinated by multiple biological processes, ranging from cell proliferation to apoptosis. Deregulated Ca2+ homeostasis is linked with various cancer hallmarks; thus, uncovering the mechanisms underlying Ca2+ homeostasis dynamics may lead to new anticancer treatment strategies. Here, we demonstrate that a reported Ca2+-channel protein TMCO1 (transmembrane and coiled-coil domains 1) is overexpressed in colon cancer tissues at protein levels but not at messenger RNA levels in colon cancer. Further study revealed that TMCO1 is a substrate of ER-associated degradation E3 ligase Gp78. Intriguingly, Gp78-mediated TMCO1 degradation at K186 is under the control of the iASPP (inhibitor of apoptosis-stimulating protein of p53) oncogene. Mechanistically, iASPP robustly reduces ER Ca2+ stores, mainly by competitively binding with Gp78 and interfering with Gp78-mediated TMCO1 degradation. A positive correlation between iASPP and TMCO1 proteins is further validated in human colon tissues. Inhibition of iASPP-TMCO1 axis promotes cytosolic Ca2+ overload-induced apoptotic cell death, reducing tumor growth both in vitro and in vivo. Thus, iASPP-TMCO1 represents a promising anticancer treatment target by modulating Ca2+ homeostasis.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proliferação de Células/fisiologia , Resistência a Medicamentos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Células HCT116 , Células HT29 , Homeostase , Humanos , Camundongos , Camundongos NusRESUMO
DNA polymerase eta (Pol η) is a eukaryotic member of the Y-family of DNA polymerase involved in translesion DNA synthesis and genome mutagenesis. Recently, several translesion DNA synthesis polymerases have been found to function in repair of DNA double-strand breaks (DSBs). However, the role of Pol η in promoting DSB repair remains to be well defined. Here, we demonstrated that Pol η could be targeted to etoposide (ETO)-induced DSBs and that depletion of Pol η in cells causes increased sensitivity to ETO. Intriguingly, depletion of Pol η also led to a nonhomologous end joining repair defect in a catalytic activity-independent manner. We further identified the scaffold protein Kap1 as a novel interacting partner of Pol η, the depletion of which resulted in impaired formation of Pol η and Rad18 foci after ETO treatment. Additionally, overexpression of Kap1 failed to restore Pol η focus formation in Rad18-deficient cells after ETO treatment. Interestingly, we also found that Kap1 bound to Rad18 in a Pol η-dependent manner, and moreover, depletion of Kap1 led to a significant reduction in Rad18-Pol η association, indicating that Kap1 forms a ternary complex with Rad18 and Pol η to stabilize Rad18-Pol η association. Our findings demonstrate that Kap1 could regulate the role of Pol η in ETO-induced DSB repair via facilitating Rad18 recruitment and stabilizing Rad18-Pol η association.
Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA , Ubiquitina-Proteína Ligases , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Etoposídeo/farmacologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance that uses specialized DNA polymerases to replicate damaged DNA. DNA polymerase η (Polη) is well known to facilitate TLS across ultraviolet (UV) irradiation and mutations in POLH are implicated in skin carcinogenesis. However, the basis for recruitment of Polη to stalled replication forks is not completely understood. In this study, we used an affinity purification approach to isolate a Polη-containing complex and have identified SART3, a pre-mRNA splicing factor, as a critical regulator to modulate the recruitment of Polη and its partner RAD18 after UV exposure. We show that SART3 interacts with Polη and RAD18 via its C-terminus. Moreover, SART3 can form homodimers to promote the Polη/RAD18 interaction and PCNA monoubiquitination, a key event in TLS. Depletion of SART3 also impairs UV-induced single-stranded DNA (ssDNA) generation and RPA focus formation, resulting in an impaired Polη recruitment and a higher mutation frequency and hypersensitivity after UV treatment. Notably, we found that several SART3 missense mutations in cancer samples lessen its stimulatory effect on PCNA monoubiquitination. Collectively, our findings establish SART3 as a novel Polη/RAD18 association regulator that protects cells from UV-induced DNA damage, which functions in a RNA binding-independent fashion.
Assuntos
Antígenos de Neoplasias/metabolismo , Dano ao DNA , DNA/biossíntese , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Linhagem Celular , DNA de Cadeia Simples/biossíntese , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Mutação de Sentido Incorreto , Neoplasias/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteína de Replicação A/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Raios UltravioletaRESUMO
In eukaryotic cells, Endoplasmic Reticulum (ER) is an interconnected membranous organelle and plays important roles in protein synthesis and lipid metabolism. We have previously demonstrated that TMCO1 is an ER Ca2+ channel actively preventing ER Ca2+ overloading. Recently, we also found that TMCO1 deficiency in mouse granulosa cells (GCs) caused abnormal Ca2+ signaling, ER stress and enhanced reactive oxygen species (ROS). In this study, we further examined the roles of TMCO1 in lipid metabolism and mitochondrial functions. Intriguingly, we found that TMCO1 deletion reduced the number of lipid droplets (LDs) and the content of triglyceride (TG), which was due to ER stress associated degradation (ERAD) of the important enzyme in catalyzing TG synthesis, diacylglycerol acyltransferase 2 (DGAT2). Hypofunction in transforming non-esterification fatty acid (NEFA) to TG caused NEFA deposit, a potential risk of mitochondrial dysfunction. Furthermore, in TMCO1 deficient cells, mitochondria volume decreased and inefficient oxidative phosphorylation was detected, which underlined enhanced mitophagy and impaired mitochondrial functions. Taken these data together, we for the first time revealed the role of TMCO1 in regulating lipid-metabolism and mitochondrial function. This study may provide new insights into understanding TMCO1 defect syndrome.
Assuntos
Canais de Cálcio/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/genética , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Camundongos Knockout , Mitocôndrias/patologia , Mitofagia/genética , Consumo de Oxigênio , Triglicerídeos/metabolismoRESUMO
As a deubiquitinating enzyme (DUB), the physiological substrates of ataxin-3 (ATX-3) remain elusive, which limits our understanding of its normal cellular function and that of pathogenic mechanism of spinocerebellar ataxia type 3 (SCA3). Here, we identify p53 to be a novel substrate of ATX-3. ATX-3 binds to native and polyubiquitinated p53 and deubiquitinates and stabilizes p53 by repressing its degradation through the ubiquitin (Ub)-proteasome pathway. ATX-3 deletion destabilizes p53, resulting in deficiency of p53 activity and functions, whereas ectopic expression of ATX-3 induces selective transcription/expression of p53 target genes and promotes p53-dependent apoptosis in both mammalian cells and the central nervous system of zebrafish. Furthermore, the polyglutamine (polyQ)-expanded ATX-3 retains enhanced interaction and deubiquitination catalytic activity to p53 and causes more severe p53-dependent neurodegeneration in zebrafish brains and in the substantia nigra pars compacta (SNpc) or striatum of a transgenic SCA3 mouse model. Our findings identify a novel molecular link between ATX-3 and p53-mediated cell death and provide an explanation for the direct involvement of p53 in SCA3 disease pathogenesis.
Assuntos
Apoptose , Ataxina-3/metabolismo , Doença de Machado-Joseph/enzimologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Estabilidade ProteicaRESUMO
The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.
Assuntos
Ataxina-3/genética , Quinase 1 do Ponto de Checagem/genética , Reparo do DNA , Replicação do DNA , DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Proteínas Repressoras/genética , Ataxina-3/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Células HEK293 , Humanos , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , UbiquitinaçãoRESUMO
DNA damage response (DDR) is essential for genome stability and human health. Recently, several RNA binding proteins (RBPs), including fused-in-sarcoma (FUS), have been found unexpectedly to modulate this process. The role of FUS in DDR is closely linked to the pathogenesis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Given that RBM45 is also an ALS-associated RBP, we wondered whether RBM45 plays any function during this process. Here, we report that RBM45 can be recruited to laser microirradiation-induced DNA damage sites in a PAR- and FUS-dependent manner, but in a RNA-independent fashion. Depletion of RBM45 leads to abnormal DDR signaling and decreased efficiency in DNA double-stranded break repair. Interestingly, RBM45 is found to compete with histone deacetylase 1 (HDAC1) for binding to FUS, thereby regulating the recruitment of HDAC1 to DNA damage sites. A common familial ALS-associated FUS mutation (FUS-R521C) is revealed to prefer to cooperate with RBM45 than HDAC1. Our findings suggest that RBM45 is a key regulator in FUS-related DDR signaling whose dysfunction may contribute to the pathogenesis of ALS.
Assuntos
Dano ao DNA , Histona Desacetilase 1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ligação Competitiva , Linhagem Celular Tumoral , Reparo do DNA , Células HEK293 , Células HeLa , Histona Desacetilase 1/genética , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Interferência de RNA , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genéticaRESUMO
Human Huntingtin (HTT), a Huntington's disease gene, is highly expressed in the mammalian brain and testis. Simultaneous knockout of mouse Huntingtin (Htt) in brain and testis impairs male fertility, providing evidence for a link between Htt and spermatogenesis; however, the underlying mechanism remains unclear. To understand better the function of Htt in spermatogenesis, we restricted the genetic deletion specifically to the germ cells using the Cre/loxP site-specific recombination strategy and found that the resulting mice manifested smaller testes, azoospermia and complete male infertility. Meiotic chromosome spread experiments showed that the process of meiosis was normal in the absence of Htt. Notably, we found that Htt-deficient round spermatids did not progress beyond step 3 during the post-meiotic phase, when round spermatids differentiate into mature spermatozoa. Using an iTRAQ-based quantitative proteomic assay, we found that knockout of Htt significantly altered the testis protein profile. The differentially expressed proteins exhibited a remarkable enrichment for proteins involved in translation regulation and DNA packaging, suggesting that Htt might play a role in spermatogenesis by regulating translation and DNA packaging in the testis.
Assuntos
Mutação em Linhagem Germinativa/genética , Infertilidade Masculina/genética , Deleção de Sequência/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Espermatogênese/genética , Animais , DNA/genética , Infertilidade Masculina/metabolismo , Masculino , Meiose/genética , Camundongos , Proteômica/métodos , Espermátides/metabolismo , Testículo/metabolismoRESUMO
Environmental stresses are important factors causing male infertility which attracts broad attention. Protein acetylation is a pivotal post-translational modification and modulates diverse physiological processes including spermatogenesis. In this study, we employed quantitative proteomic techniques and bioinformatics tools to analyze the alterations of acetylome profile of mouse testis after heat shock and X-irradiation. Overall, we identified 1139 lysine acetylation sites in 587 proteins in which 1020 lysine acetylation sites were quantified. The Gene Ontology analysis showed that the major acetylated protein groups were involved in generation of precursor metabolites and metabolic processes, and were localized predominantly in cytosolic and mitochondrial. Compared to the control group, 36 sites of 28 acetylated proteins have changed after heat shock, and 49 sites of 43 acetylated proteins for X-ray exposure. Some of the differentially acetylated proteins have been reported to be associated with the progression of spermatogenesis and male fertility. We observed the up-regulated acetylation level change on testis specific histone 2B and heat shock protein upon heat treatment and a sharp decline of acetylation level on histone H2AX under X-ray treatment, suggesting their roles in male germ cells. Notably, the acetylation level on K279 of histone acetyltransferase (Kat7) was down-regulated in both heat and X-ray treatments, indicating that K279 may be a key acetylated site and affect its functions in spermatogenesis. Our results reveal that protein acetylation might add another layer of complexity to the regulation for spermatogenesis, and further functional studies of these proteins will help us elucidate the mechanisms of abnormal spermatogenesis.
Assuntos
Temperatura Alta , Lisina/metabolismo , Proteômica/métodos , Testículo/metabolismo , Testículo/efeitos da radiação , Acetilação/efeitos da radiação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional , Resposta ao Choque Térmico/efeitos da radiação , Lisina/química , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Domínios Proteicos , Proteoma/química , Proteoma/metabolismo , Espectrometria de Massas em TandemRESUMO
Premature ovarian failure (POF) is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.
Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Menopausa Precoce/genética , Proteínas Mutantes Quiméricas/genética , Insuficiência Ovariana Primária/genética , Adulto , Idoso , Sequência de Bases , Linhagem Celular Tumoral , Síndrome de Cockayne/genética , Dano ao DNA/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Pessoa de Meia-Idade , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNARESUMO
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.
Assuntos
Dano ao DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteínas Nucleares/fisiologia , Nucleotidiltransferases/fisiologia , Camptotecina/toxicidade , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Conversão Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico/genética , Inibidores da Topoisomerase I/toxicidade , Ubiquitina-Proteína LigasesRESUMO
DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N(2)-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N(2)-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ(52-516)) leads to reduced polymerization activity, and the mutant PGM2(52-516) but not PGM1(52-516) can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ(52-516) retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis.
Assuntos
Benzopirenos/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Proteínas Mutantes/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Animais , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/química , Biocatálise/efeitos dos fármacos , Primers do DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Cinética , Camundongos , Modelos MolecularesRESUMO
Many DNA repair proteins can be recruited to DNA damage sites upon genotoxic stress. In order to search potential DNA repair proteins involved in cellular response to mitomycin C treatment, we utilized a quantitative proteome to uncover proteins that manifest differentially enrichment in the chromatin fraction after DNA damage. 397 proteins were identified, among which many factors were shown to be involved in chromatin modification and DNA repair by GO analysis. Specifically, methyl-CpG-binding domain protein 2 (MBD2) is revealed to be recruited to DNA damage sites after laser microirradiation, which was mediated through MBD domain and MBD2 C-terminus. Additionally, the recruitment of MBD2 is dependent on poly (ADP-ribose) and chromodomain helicase DNA-binding protein 4 (CHD4). Moreover, knockdown of MBD2 by CRISPR-Cas9 technique results in MMC sensitivity in mammalian cells.
Assuntos
Autoantígenos/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Mapeamento de Peptídeos/métodos , Proteoma/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/efeitos da radiação , Células HeLa , Humanos , Ligação Proteica , Doses de Radiação , Espectrometria de Massas em Tandem/métodosRESUMO
5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identiï¬ed disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/ß-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.
Assuntos
Encéfalo/metabolismo , Corpo Estriado/metabolismo , Citosina/análogos & derivados , Doença de Huntington/genética , Doença de Huntington/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Encéfalo/fisiopatologia , Corpo Estriado/fisiopatologia , Citosina/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Epigenômica , Humanos , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.
Assuntos
Dano ao DNA , DNA/biossíntese , Proteína 2 Homóloga a MutS/fisiologia , Raios Ultravioleta , Animais , Linhagem Celular , Replicação do DNA , Proteínas de Ligação a DNA/análise , DNA Polimerase Dirigida por DNA/análise , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Proteína 2 Homóloga a MutS/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dímeros de Pirimidina/metabolismo , Proteína de Replicação A/análise , Ubiquitina-Proteína Ligases , UbiquitinaçãoRESUMO
Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.
Assuntos
Sinalização do Cálcio , Dano ao DNA/genética , DNA Mitocondrial/metabolismo , Genoma Mitocondrial/genética , Doença de Huntington/patologia , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Animais , Bradicinina/farmacologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Neostriado/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Resorcinóis/farmacologiaRESUMO
Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity.