Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutr J ; 22(1): 48, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798712

RESUMO

BACKGROUND: The relationship between marine polyunsaturated fatty acid (PUFA) intake and cardiovascular disease and mortality in dyslipidemic patients is unclear. Men with dyslipidemia have a higher risk of cardiovascular disease than women, and PUFA supplementation may be more beneficial in men. OBJECTIVE: The purpose of this study was to assess the relationship between different types of marine polyunsaturated fatty acids intakes and cardiovascular disease, all-cause mortality, and cardiovascular mortality in adult U.S. males with dyslipidemia. METHODS: The study ultimately included 11,848 adult men with dyslipidemia who were screened from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2016. This was linked to the 2019 National Death Index (NDI) records to establish a prospective cohort. In the study, a logistic regression model was established to assess the relationship between PUFA intake and prevalent CVD, and a Cox proportional hazards regression model was established to assess the relationship between PUFA intake and death. RESULTS: In the fully adjusted models, compared with participants in the lowest tertile, participants with the highest DPA intake were associated with a lower risk of CVD (CVD: OR = 0.71, 95%CI: 0.55, 0.91; angina: OR = 0.54, 95%CI: 0.38, 0.79; stroke: OR = 0.62, 95%CI: 0.43, 0.89), but not with three subtypes of congestive heart failure, coronary heart disease, and myocardial infarction. And the highest tertile level of DPA intake can reduce all-cause mortality (HR = 0.77, 95%CI: 0.64, 0.91) and CVD mortality (HR = 0.68, 95%CI: 0.52, 0.90). CONCLUSIONS: Cardiovascular disease risk, all-cause mortality, and CVD mortality were inversely associated with dietary DPA intake but not EPA and DHA intakes in U.S. male participants with dyslipidemia.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Humanos , Masculino , Adulto , Feminino , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Estudos Prospectivos , Risco
2.
Food Funct ; 15(15): 7920-7935, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38979640

RESUMO

Early dietary patterns potentially influence the health status and lifespan throughout adulthood and the entire lifespan. However, dietary behaviors are difficult for everyone to control during adolescence. It is even more important to study the effects of interventions of early dietary patterns on the lifespan under arbitrary feeding conditions. The research involves observing the survival status and lifespan of rats from weaning to adulthood with three different dietary patterns (a high-carbohydrate diet (HC), a high-protein diet (HP), and a high-fat diet (HF)) under ad libitum feeding conditions. The administration of high-carbohydrate diets leads to a significant extension of both median and maximum survival times (P < 0.05) in Wistar rats. Furthermore, it markedly enhanced the spatial memory capacity, mitigated the occurrence of liver and kidney pathological outcomes in elderly rats, and increased the abundance of gut microbiota improving amino acid metabolism. Additionally, feeding rats a high-carbohydrate diet improved glutathione (GSH) synthesis and recycling and activated the expression and upregulation of the lifespan-related proteins Foxo3a/Sirt3 and the key metabolic enzyme GPX-4. The high-carbohydrate diet from weaning to adulthood may potentially extend the lifespan by enhancing rat systemic glutathione synthesis, recycling, and improving the redox state pathway.


Assuntos
Homeostase , Longevidade , Oxirredução , Ratos Wistar , Desmame , Animais , Ratos , Masculino , Microbioma Gastrointestinal , Carboidratos da Dieta/metabolismo , Fígado/metabolismo , Glutationa/metabolismo , Dieta Hiperlipídica , Multiômica
3.
Nutr Rev ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287649

RESUMO

Dietary restriction and fasting have been recognized for their beneficial effects on health and lifespan and their potential application in managing chronic metabolic diseases. However, long-term adherence to strict dietary restrictions and prolonged fasting poses challenges for most individuals and may lead to unhealthy rebound eating habits, negatively affecting overall health. As a result, a periodic fasting-mimicking diet (PFMD), involving cycles of fasting for 2 or more days while ensuring basic nutritional needs are met within a restricted caloric intake, has gained widespread acceptance. Current research indicates that a PFMD can promote stem cell regeneration, suppress inflammation, extend the health span of rodents, and improve metabolic health, among other effects. In various disease populations such as patients with diabetes, cancer, multiple sclerosis, and Alzheimer's disease, a PFMD has shown efficacy in alleviating disease symptoms and improving relevant markers. After conducting an extensive analysis of available research on the PFMD, it is evident that its advantages and potential applications are comparable to other fasting methods. Consequently, it is proposed in this review that a PFMD has the potential to fully replace water-only or very-low-energy fasting regimens and holds promise for application across multiple diseases.

4.
Clin Interv Aging ; 16: 2111-2123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35221682

RESUMO

PURPOSE: How to prolong life by diet has been widely concerned. There are many reports about the effects of different dietary patterns on life span, but the results are not consistent. The main reason may be that total energy intake has not been considered. This study aims to explore the effects of isocaloric different dietary patterns on population life span. MATERIALS AND METHODS: From the data of the follow-up population, eligible participators were divided into normal control (NC) group (28.31% fat, 12.37% protein, 62.30% carbohydrate), isocaloric high-fat (IHF) group (38.39% fat, 12.21% protein, 51.32% carbohydrate), isocaloric high-protein (IHP) group (33.41% fat, 17.10% protein, 52.67% carbohydrate) and isocaloric high-carbohydrate (IHC) group (22.23% fat, 10.52% protein, 70.13% carbohydrate) according to the dietary structure and the age stratification. Global serum metabolic profiling analysis by UPLC-Q-TOF-MS/MS technology, fatty acid and amino acid profiles in serum were determined by GC-MS and UPLC-TQ-MS technology. One-way ANOVA followed by Dunnett post hoc test and receiver operating characteristic (ROC) curve analysis were used to statistical analysis. RESULTS: Non-targeted metabolomics was to identify 18 potential metabolites related to longevity. ROC curve analysis to identify biomarkers indicated that the areas under the ROC (AUC) of the 12 of 18 biomarkers are above 0.9. The 12 biomarkers were mainly enriched in three metabolic pathways: lipid metabolism, amino acid metabolism and tricarboxylic acid cycle. Compared to control, 11 and 10 of 12 biomarkers showed the same trend with aging in IHP and IHC groups, respectively. Conversely, no differences were observed between IHF group and NC group. CONCLUSION: Without consideration of the nature of carbohydrates, fats and proteins, IHP and IHC diets might shorten life span by influencing amino acid metabolism, lipid metabolism and tricarboxylic acid cycle metabolism, while the isocaloric IHF diet has no effects on longevity.


Assuntos
Longevidade , Espectrometria de Massas em Tandem , Biomarcadores , Dieta , Ingestão de Energia , Humanos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA